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Abstract

Social norms are standards of behaviour common in a society.
However, when agents make decisions without considering
how others are impacted, norms can emerge that lead to the
subjugation of certain agents. We present RAWL·E, a method
to create ethical norm-learning agents. RAWL·E agents oper-
ationalise maximin, a fairness principle from Rawlsian ethics,
in their decision-making processes to promote ethical norms
by balancing societal well-being with individual goals. We
evaluate RAWL·E agents in simulated harvesting scenarios.
We find that norms emerging in RAWL·E agent societies
enhance social welfare, fairness, and robustness, and yield
higher minimum experience compared to those that emerge
in agent societies that do not implement Rawlsian ethics.

1 Introduction
Social norms are standards of expected behaviour that gov-
ern a multi-agent system (MAS) and enable coordination
between agents (Levy and Griffiths 2021; Wright 1963).
Norms can be established through top-down prescriptions or
emerge bottom-up via interactions between agents (Morris-
Martin, De Vos, and Padget 2019). However, when agents
are solely self-interested, norms may emerge that exploit
some agents for the benefit of others. Where ethics involves
one agent’s concern for another (Murukannaiah and Singh
2020), norms which result in the subjugation of agents are
unethical. If agents learn norms by appealing to existing be-
haviours in a society without evaluating how ethical those
behaviours are, they risk perpetuating unethical norms.

Previous works on promoting norms which are consider-
ate of others, such as Tzeng et al. (2022) and Dell’Anna et
al. (2020), appeal to individual or societal preferences over
values. Other works observe the behaviour of others to en-
courage cooperation: Oldenburg and Zhi (2024) infer norms
by observing apparent violations of self-interest; Guo et al.
(2020) learn contextual priority of norms from observing ex-
perts; Chen et al. (2017) imply norms through reciprocity.

However, approaches which appeal to preferences or ex-
isting behaviours to promote cooperation define ethical be-
haviour by reference to descriptive statements, which are
statements that express what states of affairs are like (Kim,
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Hooker, and Donaldson 2021). Attributing ethics descrip-
tively may lead to the issue of deriving an ought from an
is—just because something is the case doesn’t mean it ought
to be. Where existing norms or behaviours are unethical,
approaches that encourage cooperation through descriptive
facts thereby risk propagating unethical norms which reflect
what is the case, rather than what ought to be.

To mitigate the is-ought gap, we turn to normative ethics.
Normative ethics is the study of practical means to deter-
mine the ethical acceptability of different courses of action
(Woodgate and Ajmeri 2024). Normative ethics principles
are justified by reason in philosophical theory. These prin-
ciples are normative in that they are prescriptive, indicating
how things ought to be, rather than descriptive, indicating
how things are (Kim, Hooker, and Donaldson 2021).

The principle of maximin—to maximise the minimum
experience—is a widely respected fairness principle in nor-
mative ethics advanced by Rawls (1958). Rawls states that in
a society with unequal distribution which is not to the benefit
of all, those benefiting the least should be prioritised. We hy-
pothesise that creating agents that promote the emergence of
ethical norms, while avoiding the is-ought gap, is aided by
an appeal to Rawlsian ethics (Woodgate and Ajmeri 2022).

Contribution We propose RAWL·E, a novel method to
design socially intelligent norm-learning agents that con-
sider others in individual decision making by operational-
ising the principle of maximin from Rawlsian ethics. A
RAWL·E agent includes an ethics module that applies max-
imin to assess the effects of its behaviour on others.

Novelty Operationalising Rawlsian ethics in learning
agents to enable explicit norm emergence is a novel con-
tribution. RAWL·E goes beyond existing works on norm-
learning agents: Ajmeri et al.’s (2020) agents incorporate
ethical decision-making, but do not incorporate learning.
Agrawal et al. (2022) address the emergence of explicit
norms, but optimise norms based on the sum of payoffs
received by other agents, which might be unfair for some
agents. Zimmer et al. (2021) and Balakrishnan et al. (2022)
operationalise Rawlsian ethics in learning agents, but do not
consider the role of norms. As a RAWL·E agent gains expe-
rience, it learns to achieve its goals whilst behaving in ways
that support norms which prioritise those who are least ad-
vantaged in situations of unequal resource distribution.
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We evaluate RAWL·E agents in two simulated harvesting
scenarios implemented in reinforcement learning (RL). We
find that (1) RAWL·E agents learn ethical norms that pro-
mote the well-being of the least advantaged agents, and (2)
RAWL·E agent societies yield higher social welfare, fair-
ness, and robustness than agents who do not operationalise
Rawlsian ethics in their individual decision-making.

Organisation Section 2 explores related works and gaps.
Section 3 describes our method. Section 4 presents the sim-
ulation environment used to evaluate RAWL·E agents. Sec-
tion 5 discusses results of our simulation experiments. Sec-
tion 6 concludes with a discussion of future directions.

2 Related Works
Research on combining normative ethics with norm emer-
gence and learning is relevant to our contributions.

Normative Ethics and Norm Emergence Ethical norm
emergence has been examined through the lens of agent
roles. Anavankot et al. (2023) propose norm entrepreneurs
that influence the dynamics of norm-following behaviours
and thus the emergence of norms. Vinitsky et al. (2023)
study norm emergence through sanction classification. Levy
and Griffiths (2021) manipulate rewards using a central con-
troller to enable norm emergence. Neufeld et al. (2022) use
deontic logic to implement a normative supervisor module
in RL agents. Yaman et al.’s (2023) agents sanction one an-
other to encourage effective divisions of labour. Maranhão
et al. (2022) formally reason about normative change. How-
ever, a gap remains in agents learning norms based on what
ought to be the case, rather than what is. We address this
gap by implementing principles from normative ethics to en-
courage the emergence of norms that can be justified inde-
pendently to a specific situation.

Traditional approaches encourage norm emergence by
maximising social welfare—how much society as a whole
gains. Shoham and Tennenholtz (1997) promote highest
cumulative reward. Yu et al. (2014) utilise majority vote.
Agrawal et al. (2022) sum the payoffs for different stake-
holders. Focusing on social welfare alone may lead to situa-
tions where a minority is treated unfairly for the greater good
(Anderson, Anderson, and Armen 2004), and mutual reward
does not specify how to coordinate fairly (Grupen, Selman,
and Lee 2022). To mitigate weaknesses associated with only
maximising social welfare, we implement Rawlsian ethics,
emphasising improving the minimum experience.

Normative Ethics and Learning Jing and Doorn (2020)
emphasise the importance of focusing on positive standards
alongside preventative ethics, which involves negative rules
denoting wrongdoing. As ethics is dynamic, it may not al-
ways be possible to determine which behaviours to restrict.

Svegliato et al. (2021) implement divine command theory,
prima facie duties, and virtue ethics; Nashed et al. (2021)
implement the veil of ignorance, golden rule and act util-
itarianism. Dong et al. (2024) optimise federated policies
under utilitarian and egalitarian criteria. A gap exists, how-
ever, in applying normative ethics in RL to norm emergence.
RAWL·E addresses that gap.

3 Method
We now present our method to design RAWL·E agents who
operationalise Rawlsian ethics to support the emergence of
ethical norms.

3.1 Schematic
Definition 1. Environment E is a tuple ⟨AG,D,N⟩ where,
AG = {ag1, ..., agn} is a set of agents; D is the amount of
total resources; N is the set of norms.

Definition 2. A RAWL·E agent is a tuple :
⟨d, υ,G,A,Z,NM,EM,DM⟩ where, d ∈ D is the
amount of resources to which the agent has access; υ is a
measure of its well-being; G is the set of goals g1, ..., gl;
A are the actions available to the agent to help achieve its
goals; Z are the behaviours which the agent has learned;
NM is its norms module; EM is its ethics module; and DM
is its interaction module.

Definition 3. A goal g ∈ G is a set of favourable states an
agent aims to achieve.

Definition 4. A behaviour ζ ∈ Z is a tuple ⟨pre, act⟩, where
pre ∈ Expr is its precondition; act ∈ Expr is its action;
and Expr is any logical expression that can be evaluated as
either true or false based on the values of its variables.

A behaviour has a precondition denoting the conditions
within which the behaviour arises, and a postcondition,
which is the action implied by the precondition. Each agent
keeps a record of their learnt behaviours.

A behaviour is encoded in the form of an if-then rule:
<behaviour> ::= IF <pre> THEN <act>

Definition 5. A norm n ∈ N , whereN ⊆ Z, is a behaviour
adopted by a society.

Norms are the prescription and proscription of agent be-
haviour on a societal level (Savarimuthu et al. 2013).

Definition 6. N , where N ⊆ Z, denotes the set of emerged
norms, i.e., the behaviours adopted by the society as norms,
which form a normative system describing a society.

Norms emerge when the same behaviours are adopted by
other agents (Tuomela 1995). Norm emergence is accepted
to have happened when a predetermined percentage of the
population adopt the same behaviours. As following previ-
ous literature, we assume a norm to have emerged when it
reaches 90% convergence (Kittock 1995).

Definition 7. A sanction F represents a positive or negative
reaction to behaviour which provides feedback to the learner
in the form of a reward.

Sanctions are positive or negative reactions to behaviour
which help enforce norms. A self-directed sanction is a sanc-
tion directed towards and affecting only its sender (Nardin
et al. 2016). The self-directed sanction provides feedback to
the learner as a reward.

3.2 Interaction and Norm Learning
To make decisions and pursue their goals, RAWL·E agents
use ethics module, norms module, and interaction module.
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Ethics Module Ethics module, EM, assesses how ac-
tions affect the well-being of other agents. To evaluate the
well-being of others, RAWL·E agents implement Rawlsian
ethics. Adapted from Leben (2020), an ethical utility func-
tion u(d) → (υ) models a distribution of resources, where
d is a vector of resource distribution which sums to D,
the amount of total resources, and (υ) is a measurement of
well-being for agents considering that resource distribution.
Where w is a vector of inputs (e.g., observed well-being of
agents), Rawlsian ethics is expressed as:

MA(d) = minw u(d, υi) (1)

Via MA(d), the ethics module evaluates whether the
agent’s action improves the minimum experience. It gener-
ates a positive self-directed sanction ξ if an action improves
the minimum experience, and a neutral or negative sanction
−ξ if it does not change or worsens. In analogy to the real
world, a positive sanction represents happiness from help-
ing others, while a negative sanction represents guilt. To im-
plement MA, ethics module takes as input Ut and Ut+1,
where U is a vector of well-being υ1, . . . , υn for all agents
ag1, . . . , agn at times t and t + 1. Ethics module identifies
the minimum experience minwu(d, υ) at t and t+1, storing
the results in υmint and υmint+1, respectively. Therefore:

Ft+1(st, st+1) =


ξ, if υmint < υmint+1

0, υmint = υmint+1

−ξ υmint > υmint+1

(2)

Algorithm 1 describes internals of the ethics module. The
inputs are Ut and Ut+1. To implement MA, store υmint and
υmint+1

(lines 1–2). Compare υmint and υmint+1
to assess how

action a taken in st affected υmint+1
(Line 3). Generate sanc-

tion Ft+1 (Lines 4–7). Output Ft+1 for interaction model
to combine with environmental reward rt+1 through reward
shaping so that r′t+1 = rt+1 + Ft+1. (Line 8).

Algorithm 1: Ethics module.
Input: Ut, Ut+1

Output: Ft+1

1: υmint ← getMinExperience(Ut)
2: υmint+1

← getMinExperience(Ut+1)
3: if υmint+1 > υmint then
4: Ft+1 = ξ
5: else if υmint+1 == υmint then
6: Ft+1 = 0
7: else
8: Ft+1 = −ξ
9: end if

10: return Ft+1

Norms Module Norms module, NM, tracks patterns of
behaviour the agent learns. Norms module stores behaviours
in a behaviour base and norms in a norm base. For each
behaviour, it computes and stores the numerosity num, ob-
tained from the number of times the behaviour is used, and
the reward r′ (described in interaction module) received

from using the behaviour. The fitness of each behaviour τ
is obtained from num · r′ decayed over time. Where η is the
age of the behaviour and λ is the decay rate,

τ(ζ) = num · r′ · λη (3)

Algorithm 2 describes the internals of the norm module.
Inputs to the norm module include νt, at, r

′
t+1, where νt is

the precondition obtained from the agent’s view of state st
(for scalability, νt is a subset of st); at is the action taken in
st. Norms module searches the behaviour base to retrieve a
behaviour matching ⟨pre, act⟩ to νt, at (line 1). If there is a
matching behaviour, update τ(ζ) (lines 2–3). If there is no
match, behaviour learner creates a new behaviour with νt, at
and adds it to behaviour base (lines 5–6). Every tclip behaviours
steps, if behaviour base exceeds the maximum capacity, be-
haviour base is clipped to the maximum capacity by remov-
ing the least fit behaviours (lines 8–9). Norms module com-
pares behaviour base with norm base shared by the society
and stores emerged norms in norm base (line 10).

Algorithm 2: Norms module.
Input: νt, at

1: ζ ← behaviourBase.retrieve(νt, at)
2: if ζ! = None then
3: behaviourBase.updateFitness(ζ)
4: else
5: ζ ← behaviourLearner.create(νt, at)
6: behaviourBase.add(ζ)
7: end if
8: if t % clipNorm is 0 and len(behaviourBase) > maxLen

then
9: behaviourBase.clip()

10: end if
11: normBase.updateEmergedNorms(behaviourBase)

Interaction Module Interaction module, DM, implements
RL with deep Q network (DQN) architecture (Sutton and
Barto 2018). Via DQN, RAWL·E agent learns a behaviour
policy to achieve goals while promoting ethical norms. At
each time step t, agent selects a batch of B random ex-
periences to train its Q network against its target network,
computing the Huber loss (Huber 1964). To prevent over-
fitting, every C steps weights of target network are updated
to weights of the Q network θ. At each step, agent receives
an observation of the environment, a vector of features x(s)
visible in state s, which it stores in the experience replay
buffer. Each feature of x(s) coresponds to a feature in the
agent’s DQN. With probability ϵ, agent selects an action ran-
domly or using DQN. Using DQN, actions a ∈ A are se-
lected which policy π(s) estimates will maximise expected
return and help achieve goals G. Agent acts asynchronously
and receives a reward from its environment r. DM obtains
shaped reward Ft+1 from EM. To encourage an agent to
learn behaviours which promote ethical norms whilst pur-
suing goals, DM combines self-directed sanction Ft+1 with
environmental reward rt+1 through reward shaping so that
r′t+1 = rt+1 +Ft+1. Transition (at, st, st+1, r

′
t+1) is stored
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in experience replay buffer. DM obtains view νt from state
st and passes νt to NM for norm learning.

Algorithm 3 outlines the interaction module. Input en-
vironmental observation at st, which includes environment
state, agent’s resources d, and well-being υ1, . . . , υn of all
agents ag1, . . . , agn. Deterministic policy Π(θ, a) defines
the agent’s behaviour in st to output action at (Line 1). After
acting, observe rt+1, st+1 (Line 2); obtain well-being vec-
tors Ut and Ut+1 with υ1, . . . , υn obtained from st and st+1

(Lines 3–4); pass Ut and Ut+1 to EM to obtain Ft+1 (Line
5); obtain r′t+1 from rt+1 and Ft+1 (Line 6); update Π(θ, a)
(Line 7); obtain νt from st (Line 8); pass νt to NM to learn
and store behaviours and norms (Line 9).

Algorithm 3: Interaction module.
Input: st

1: at ← π(st) /* Obtain action from policy */
2: rt+1, st+1 ← act(at) /* Perform action, observe

rt+1, st+1 */
3: Ut ← getWellbeing(st) /* Obtain well-being */
4: Ut+1 ← getWellbeing(st+1)
5: Ft+1 ← EthicsModule(Ut, Ut+1) /* Obtain sanction */
6: r′t+1 ← rt+1 + Ft+1 /* Shape reward */
7: Π(θ, a) ← update(Π, st, r′t+1, st+1) /* Update policy

*/
8: νt ← getView(st) /* Obtain view of st */
9: NormsModule(νt, at, r′t+1) /* Update norms module */

4 Simulation Environment
We evaluate RAWL·E agents in a simulated harvesting sce-
nario where they forage for berries. Cooperative behaviours
may emerge, such as agents learning to throw berries to one
another. To demonstrate the efficacy of modular ethical anal-
ysis, the scenario includes environmental rewards for coop-
eration. Figure 1 shows our harvesting environment.

4.1 Scenario
The environment represents a cooperative multi-agent sce-
nario with a finite population of agents on a o×p grid. Time
is represented in steps. At the beginning of each episode, the
grid is initialised with k = 4 agents, and binitial = 12 berries
at random locations. An agent begins with hinitial = 5.0
health. Agents may collect berries, throw berries to other
agents, or eat berries. An agent receives a gain in health
hgain = 0.1 when it eats a berry. Agent health decays
hdecay = −0.01 at every time step. An agent dies if its health
level reaches 0 and episode ends when all agents have died.
Appendix A.2, Tables 4 and 5 provide complete list of simu-
lation parameters and parameters for the interaction module.

Agents act asynchronously, in a different random order on
each step of the simulation. At each step, each agent agi de-
cides to move (north, east, south, west), eat a berry, or throw
a berry to another agent agj if agi has at least hthrow = 0.6
health. When an agent has eaten a berry, a berry regrows at a
random location on the grid. At each step, an agent forages
for a berry in its location. An agent observes its health, its

berries, distance to the nearest berry, and each agent’s well-
being. Well-being is represented by a function of an agent’s
health and number of berries it has in its bag:

agwell-being =
aghealth + (agberries × hgain)

hdecay
(4)

For each agent, at each time step:
(1) Receive observation st
(2) Choose a using DQN: move (north, south, east, west),

eat, throw
(3) Forage for berry; update health (hdecay at each step, hgain

if berry eaten)
(4) Receive transition: rt+1, st+1, check if done
(5) Pass transition to Q network to learn
(6) Every C steps, update θ of target network
(7) Pass transition to norms module, update norm base
(8) Check health, if agent has died remove from the grid

For testing, we run each simulation e = 2000 times,
with each simulation running until all agents have died, or
a maximum of tmax = 50 steps. We select these numbers
empirically. Agents clip behaviour every tclip behaviours steps,
clip norm base every tclip norms steps, and check for emerged
norms every step. Table 1 lists the norm parameters.

Table 1: Norm parameters.

Parameter Description Value

tclip behaviours Clip behaviour base frequency 10.0
tclip norms Clip norm base frequency 5.0

4.2 Society Types for Evaluation
We implement two types of agent societies for evaluation.
Baseline Cooperative: DQN A society consists of stan-
dard DQN agents who do not implement an ethics mod-
ule but receive environmental rewards for cooperative be-
haviour. DQN agent makes decisions according to its obser-
vations and expected reward.
RAWL·E: Rawlsian DQN A society of RAWL·E agents
act in ways that promote Rawlsian ethics. RAWL·E agent
makes decisions according to its observations and expected
reward, considering the well-being of all agents.

4.3 Environmental Rewards
An agent receives a positive reward if it forages for a berry in
a location where a berry is growing, if it eats a berry when
it has berries in its bag, or if it survives to the end of the
episode. An agent receives a negative reward if it attempts
to eat or throw a berry to another agent when it doesn’t have
any, or if it dies. Agent deaths are included in raw rewards
to provide incentives for societies to survive.

Self-directed sanction of a RAWL·E agent is 0.4 if the
minimum experience was improved, –0.4 if the agent could
have improved the minimum experience but did not (i.e., if
an action was available to improve the minimum experience
but the agent chose an alternative action), and 0 otherwise.

To avoid obvious results by giving RAWL·E agents addi-
tional rewards, we normalise rewards between baseline and
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(a) Capabilities harvest. Agents move freely through the
grid but can only harvest certain berries. Some berries are
on the ground, only visible by short agents. Others are in
trees, only visible by tall agents. Agents can learn to throw
berries to one another across the grid.

(b) Allotment harvest. Agents are assigned a certain allotment in a community
garden. Agents can only harvest berries within their allotment. Each allotment
has a different amount of berries that grow there. Agents can learn to throw
berries to agents in other allotments.

Figure 1: Harvesting environment. (a) Capabilities harvest scenario explores how agents learn to identify and reach desired
berries while considering the well-being of the society. (b) Allotment harvest scenario explores how agents learn to harvest
within their desired areas while considering the well-being in the society.

RAWL·E agents such that RAWL·E agents receive lower
raw rewards. This allows for fairer comparison between so-
cieties. Table 2 summarises rewards an agent receives; in
Appendix B, Table 6 displays the complete list of rewards.

Table 2: Rewards received by an agent. To avoid obvious re-
sults by giving RAWL·E agents more rewards, we normalise
rewards between baseline and RAWL·E agents.

Action Baseline RAWL·E
Survive episode 1.0 1.0
Eat berry 1.0 0.8
Forage where berry is 1.0 0.8
Throw berry to others 0.5 0.5
Die −1.0 −1.0
Improve minimum experience 0.0 0.4
Did not improve minimum experience 0.0 −0.4

4.4 Metrics and Hypotheses
Emerged norms N describe the standards of expected be-
haviour in a society. To evaluateN , we examine cooperative
norms which emerge by their fitness and numerosity. We as-
sess the effects of those norms on societal outcomes with the
following metrics and hypotheses.

Variables To quantitatively assess societal outcomes, for
each simulation run, we record the following variables:
V1 (agwell-being) Number of days an agent has left to live,
a function of number of berries an agent carries and their
current health (Equation 4).
V2 (agresource) Number of berries eaten by an agent.

Metrics To assess fairness on an individual and at societal
level, we compute the metrics M1 (inequality) and M2 (min-
imum experience) on each variable.
M1 (inequality) Gini index across the society. Lower is bet-
ter. 0 denotes perfect equality; 1 denotes perfect inequality.
M2 (minimum experience) Lowest individual experience
across the society. Higher is better.

To assess the sustainability of the society, we compute the
metrics M3 (social welfare) and M4 (robustness).

M3 (social welfare) How much society as a whole gains
(Mashayekhi et al. 2022). Higher is better.
M4 (robustness) Length of episode. Higher is better.

Appendix C includes further description of the metrics.

Hypotheses We evaluate the following hypotheses. Null
hypotheses for each indicate no difference.
H1 (minimum experience) Norms emerging in RAWL·E
society lead to higher minimum individual experience.
H2 (inequality) Norms emerging in RAWL·E society lead
to lower inequality.
H3 (social welfare) Norms emerging in RAWL·E society
lead to higher social welfare.
H4 (robustness) Norms emerging in RAWL·E society lead
to higher robustness.

For each hypotheses, we test the significance and com-
pute effect size. For significance, we conduct Mann-Whitney
U test which is a non-parametric test for comparing two
independent groups (Mann and Whitney 1947). We use
Mann-Whitney U because the sample size k is small. p <
0.01 indicates significance. For effect size, we compute Co-
hen’s d which assesses the magnitude of difference between
means, standardised by the pooled standard deviation (Co-
hen 1988), calculated as x̄1−x̄2

spooled
, where <0.2 (negligible),

[0.2,0.5) (small), [0.5,0.8) (medium), and ≥0.8 (large).

5 Experimental Results
To evaluate the behaviour of RAWL·E agents, we run agents
in two experiment scenarios with different demonstrations
of unequal resource allocation. For testing, we run e = 2000
episodes, with each episode running until tmax = 50, or un-
til the agents die. For qualitative analysis, we examine the
emerged norms and actions promoted. For quantitative anal-
ysis, we examine fairness and sustainability metrics.

5.1 Emerged Norms
RAWL·E agent’s norms model learns emerging norms from
patterns of behaviour. To evaluate these norms, we run e
episodes for each society and storeN from each episode. At
each step, agents compare behaviour bases and store norms
repeated by 90% of agents in shared norm base N .
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We observe that in both harvest scenarios, RAWL·E
agents learn more cooperative norms of throwing berries
than the baseline society, such as:
IF <high health, medium berries, low

neighbour well-being> THEN <throw>
To evaluateN over e episodes, we examine the numeros-

ity num obtained from the times the norm is used, and
fitness τ (Equation 3) of cooperative norms. We find that
RAWL·E agents learn cooperative norms with higher fitness
and use cooperative norms more, indicated by higher nu-
merosity. Appendix D.1, Table 7 provides additional details
of emerged cooperative norms. Appendix D.2 provides the
complete list of emerged norms.

5.2 Simulation
To quantitatively assess how ethical the normative system
is, we analyse fairness and sustainability metrics of social
welfare, inequality, minimum experience, and robustness.
Table 3 summarises results for the allotment harvest; Ap-
pendix E includes additional results. We find that the results
are consistent across both scenarios with method agent soci-
eties having higher social welfare, lower inequality, higher
minimum experience, and higher robustness.

Table 3: Comparing agresource, inequality, minimum experi-
ence, and robustness of baseline and RAWL·E societies in
allotment harvest scenario. Grey highlight indicates best re-
sults with significance at p < 0.01.

Metrics Variable Mean x̄ Cohen’s d
Baseline RAWL·E

M1 Inequality agwell-being 0.20 0.10 1.58
agresource 0.14 0.06 1.32

M2
Minimum
experience

agwell-being 7.18 10.82 3.09
agresource 3.79 4.50 0.27

M3
Social
welfare

agwell-being 51.50 59.80 0.64
agresource 18.94 20.60 0.14

M4 Robustness 47.36 48.19 0.11

H1 (inequality) We find that RAWL·E societies have
lower inequality, indicated by a lower Gini index, in both
scenarios. Inequality is especially apparent in the allotment
harvest for agwell-being, where x̄ = 0.2 for the baseline so-
ciety and x̄ = 0.1 for RAWL·E. We reject the null hypoth-
esis corresponding to H1 as p < 0.01 for agwell-being and
agresource; the effect is large (1.58 for agwell-being; 1.32 for
agresource). Figure 2 compares Gini index for each society.

H2 (minimum experience) RAWL·E societies have
higher minimum individual experience than baseline agents
in both scenarios. The largest effect (3.09) is on agwell-being
in the allotment harvest, with x̄ = 10.82 in RAWL·E and
x̄ = 7.18 for baseline. For agwell-being, we reject the null hy-
pothesis corresponding to H2 as p < 0.01. For agresource, we
cannot reject the null hypothesis in as p > 0.01. Figures 3
illustrate results for each society for agwell-being.
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Figure 2: Comparing Gini index of agwell-being and agresource
for e. Lower Gini in RAWL·E indicates lower inequality.
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Figure 3: Minimum agwell-being over tmax steps summed for e,
normalised by step frequency. RAWL·E yields higher mini-
mum well-being.

H3 (social welfare) RAWL·E yields higher social welfare.
For agwell-being, the allotment harvest yields x̄ = 59.80 for
RAWL·E and x̄ = 20.60 for baseline which has a medium
effect (0.64). We reject the null hypothesis corresponding to
H3 for agwell-being (p < 0.01), the difference, however, for
agresource is not significant. Figure 4 displays these results.

H4 (robustness) RAWL·E societies survive longer (x̄ =
48.19 in allotment) than baseline societies (x̄ = 47.36 in
allotment) indicating higher robustness. We reject the null
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Figure 4: Cumulative agwell-being and agresource of each so-
ciety over tmax steps summed for e, normalised by step fre-
quency. Societies of RAWL·E agents have higher well-being
and cumulative resource consumption.

hypothesis corresponding to H4 as p < 0.01; the effect is
negligible. Figures 5a and 5b show results for each society.
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Figure 5: Days survived for e. Societies of RAWL·E agents
survive for longer, indicating higher robustness.

Summary of Findings Our results support our hypothe-
ses. Our main findings are: (1) in a society of RAWL·E
agents, social welfare is improved, indicated by higher cu-
mulative resource consumption, (2) inequality is reduced,
indicated by a lower Gini index, (3) minimum individ-
ual experience is higher than the baseline; the combi-
nation of reduced inequality and improved minimum in-
dividual experience suggests that RAWL·E societies are
fairer, and (4) RAWL·E societies survive longer, indicating
higher robustness. Together, these results suggest RAWL·E
agents promote the emergence of norms which improve fair-
ness and social welfare, thereby promoting considerate be-
haviour, further leading to a more sustainable society.

We observe that results are better (higher fairness, social
welfare, and robustness) for RAWL·E than baseline in both
scenarios. However, the difference is more apparent in the
allotment harvest than capabilities harvest. We attribute this
difference to the fact that in the capabilities harvest agents
are in a more confined space than the allotment harvest, and
must navigate around one another to reach berries.

Threats to Validity Threats arise from the simplicity of
our scenarios. While this abstraction limits real-world ap-
plicability, our focus is on demonstrating the operationali-
sation of normative ethics rather than capturing realism. To
address this threat, we present our agent architecture decou-
pled from the environment. Also, using shaped rewards to
operationalise ethics offers an adaptable method compatible
with various RL algorithms and diverse scenarios.

6 Discussion and Conclusion
Developing agents that behave in ways that promote ethi-
cal norms is crucial for ethical MAS. Operationalising prin-
ciples from normative ethics in individual decision mak-
ing helps address the problem of deriving an ought from
an is. Our results show that, compared to societies of base-
line agents who don’t implement normative ethics, RAWL·E
agents societies have higher social welfare, and are more fair
by higher minimum experience and reduced disparity.

Directions and Key Takeaways Applying normative
ethics presents challenges, and there is often disagreement
on the subject (Moor 2006). Conflicts may arise when dif-
ferent principles promote different actions (Robinson 2023).
Additionally, the application of a principle may lead to un-
intuitive outcomes or fail to promote one action over an-
other (Guinebert 2020). Utilising a variety of principles in
reasoning is beneficial to examine scenarios from different
perspectives, improving the amplitude of ethical reasoning.
Directions include operationalising a variety of principles,
and investigating circumstances in which principles conflict.

We utilise rewards to promote learning ethical behaviour
when not all states can be known in advance. However, mod-
ifying rewards combines different objectives in a single nu-
merical scale, allowing implicit comparisons between out-
comes (Nashed, Svegliato, and Blodgett 2023). Directions
include combining promotion of ethical behaviour with ex-
plicit prevention of unethical outcomes.

The scenarios we implement are abstracted to demon-
strate how the method can be implemented. Operationalis-
ing normative ethics provides a mechanism to systematically
assess the rightness and wrongness of actions in a range of
situations (Binns 2018). Applying our method to more com-
plex and real world scenarios, with a range of different RL
algorithms, is another direction for future work.

Reproducibility Our codebase is publicly available
(Woodgate, Marshall, and Ajmeri 2024). Appendices A–E
provide additional details, including computing infrastruc-
ture, parameter selection, a complete list of environmental
rewards, further descriptions of metrics, a complete set of
emerged norms, and additional details on simulation results.
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E. A.; Vezhnevets, A. S.; and Leibo, J. Z. 2023. A learning
agent that acquires social norms from public sanctions in
decentralized multi-agent settings. Collective Intelligence,
2(2): 1–14.
Woodgate, J.; and Ajmeri, N. 2022. Macro Ethics for
Governing Equitable Sociotechnical Systems. In Proceed-
ings of the 21st International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 1824–1828. On-
line: IFAAMAS. Blue Sky Ideas Track.
Woodgate, J.; and Ajmeri, N. 2024. Macro Ethics Princi-
ples for Responsible AI Systems: Taxonomy and Directions.
ACM Computing Surveys, 56(11): 1–37.
Woodgate, J.; Marshall, P.; and Ajmeri, N. 2024. Codebase
for Operationalising Rawlsian Ethics for Fairness in Norm-
Learning Agents. https://doi.org/10.5281/zenodo.14520386.
Wright. 1963. Norm and Action: A Logical Enquiry. New
York: Humanities.
Yaman, A.; Leibo, J. Z.; Iacca, G.; and Wan Lee, S. 2023.
The emergence of division of labour through decentralized
social sanctioning. Proceedings of the Royal Society B: Bi-
ological Sciences, 290(2009).
Yu, C.; Zhang, M.; and Ren, F. 2014. Collective Learning for
the Emergence of Social Norms in Networked Multiagent
Systems. IEEE Transactions on Cybernetics, 44(12): 2342–
2355.
Zimmer, M.; Glanois, C.; Siddique, U.; and Weng, P. 2021.
Learning Fair Policies in Decentralized Cooperative Multi-
Agent Reinforcement Learning. In Meila, M.; and Zhang,
T., eds., Proceedings of the 38th International Conference
on Machine Learning (ICML), volume 139, 12967–12978.
Online: PMLR.

9



A Details of Experimental Setups
This section provides details about the computing infrastruc-
ture and hyperparameter selection.

A.1 Computing Infrastructure
We conducted the simulation experiments on a workstation
with Intel Xeon Processor W-2245 (8C 3.9 GHz), 256GB
RAM, and Nvidia RTA A6000 48GB GPU.

A.2 Hyperparameter Selection
Table 4 lists the simulation parameters and range of values
tried per parameter. Results are consistent across the range
of values tried, with societies of RAWL·E agents having
higher social welfare, fairness, and robustness than societies
of baseline agents.

Table 4: Parameters for simulation experiments.

Description Parameter Range Tried Final Value

Capabilities
grid size

ocapabilities×
pcapabilities

{4× 4, 8× 4} 8× 4

Allotment
grid size

oallotment×
pallotment

{8× 4, 16× 4} 16× 4

Number of
agents

k {2, 4} 4

Initial number
of berries

binitial {8, 12, 16} 12

Initial health
of agent

hinitial {5.0, 10.0} 5.0

Health gain
from eating
berry

hgain {0.1, 1.0} 0.1

Health decay hdecay {-0.01, -0.1} −0.01
Minimum
health to
throw

hthrow {0.5, 0.6, 1.0} 0.6

Number of
episodes

e {1000, 2000} 2000

Maximum
steps in
episode

tmax {20, 50} 50

Table 5 lists the interaction module parameters and range
of values tried per parameter. We select these parameters
empirically, with reference to literature (Bengio 2012).

B Environmental Rewards
To avoid obvious results by giving RAWL·E agents addi-
tional rewards, we normalise rewards between baseline and
RAWL·E agents such that RAWL·E agents receive lower
raw rewards. This allows for fairer comparison between so-
cieties. Table 6 displays the complete list of rewards received
by baseline and RAWL·E agents.

C Metrics
Here, we provide further details about the metrics used to
evaluate societies of RAWL·E and baseline agents.

To assess the fairness of a society, we compute M1 (in-
equality) and M2 (minimum experience).
M1 (inequality) Examining the inequality of a society to
assess fairness is supported by the principle of egalitarian-
ism, which states that disparity amongst members should be
minimised (Murukannaiah et al. 2020). We use the Gini in-
dex for inequality as it is well studied and has been used
previously in MAS (Endriss 2013).
M2 (minimum experience) Examining the minimum indi-
vidual experience to assess fairness is justified by Rawlsian
ethics, which argues that those who benefit the least should
be prioritised (Rawls and Kelly 2001).

The fairest society will have the lowest inequality and
highest minimum individual experience. However, the no-
tion of fairness is abstract and achieving perfect fairness is
challenging, if not impossible (Dignum 2021). We thus aim
for satisfactory outcomes that promote equitable systems,
which have a higher goal of fairness, but might not be per-
fect.

To assess the society’s sustainability, we compute the met-
rics M3 (social welfare) and M4 (robustness).
M3 (social welfare) Measuring social welfare (how much
society as a whole gains (Mashayekhi et al. 2022)) is sup-
ported by the principle of utilitarianism, which states that
ethical actions are those which maximise utility (Ong et al.
2024).
M4 (robustness of society) Robustness relates to the de-
gree a society is sensitive to exogenous influence, exhibited
as the ability to resist and withstand adversity (Muñoz, Bills-
berry, and Ambrosini 2022).

D Results for Emerged Norms
D.1 Results for Emerged Cooperative Norms
A norm is emerged when it is adopted by over 90% of the
population. In societies of RAWL·E agents, the cooperative
norms which emerge have higher fitness and are used more
frequently, indicated by higher numerosity. Table 7 sum-
marises the results for emerged cooperative norms.

D.2 System of Emerged Norms
Figures 6 and 7 display the system of emerged norms N
in baseline and RAWL·E societies. To obtain N , we run
e = 2000 episodes for tmax = 50 steps and track the
norms which emerge in each episode. We combine N for
e to obtain the list of all norms which emerge. Norms with
“throw” consequent are cooperative, as throwing is an act
of agents helping one another. To distill specific norms into
generalised rules, we aggregate antecedent conditions which
produce the same outcome. For example, all instances of
the condition “no berries” result in the consequent “move”.
Therefore, specific norms are aggregated to the generalised
rule of:

IF <no berries> THEN <move>
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Table 5: Parameters of the Interaction Module.

Description Parameter Range Tried Final Value Criterion

Batch size B {32, 64, 128} 64 Training time

Iteration for updating weights of target network C {1000, 100, 50} 50 Test performance

Probability of exploration ϵ 0.9–0.0 0.0 Test performance

Learning rate α {0.01, 0.001, 0.0001} 0.0001 Test performance

Number of hidden units Hn {32, 64, 128} 128 Test performance

Number of hidden layers Hl 1–3 2 Test performance

Table 6: Rewards received by an agent. Rewards are nor-
malised between baseline and RAWL·E agents to avoid ob-
vious results by giving RAWL·E agents more rewards.

Action Baseline RAWL·E
Survive episode 1.00 1.00
Eat berry 1.00 0.80
Forage where berry is 1.00 0.80
Throw berry 0.50 0.50
Try to eat without berries −0.20 −0.10
Try to throw without berries −0.20 −0.10
Try to throw without sufficient health −0.20 −0.10
Try to throw without recipient −0.20 −0.10
Die −1.00 −1.00
Improve minimum experience 0.00 0.40
No difference to minimum experience 0.00 0.00
Did not improve minimum experience 0.00 −0.40

In both scenarios, we observe that in societies of RAWL·E
agents cooperative norms which emerge are more gener-
alised than cooperative norms emerging in societies of base-
line agents. For example, in Figure 6b a general norm
emerges:

IF <high health> THEN <throw>
In contrast, the cooperative norms which emerge in base-

line societies in Figure 6a are more specialised than in
RAWL·E societies. This indicates that cooperative norms in
RAWL·E societies cover a wider range of circumstances.

E Simulation Results
Table 8 provides additional details of the simulation results.

We observe that societies of RAWL·E agents have signif-
icantly lower inequality than societies of baseline agents for
both agwell-being and agresource. The effect is medium to large
in both scenarios: 1.58 for agwell-being and 0.63 for agresource
in the capabilities harvest; 1.58 for agwell-being and 1.32 for
agresource in the allotment harvest.

For minimum experience, societies of RAWL·E agents
show significantly higher results than baseline societies for
agwell-being in both scenarios with a large effect, however,
the minimum experience is not significantly different for
agresource.

Social welfare is significantly higher for agwell-being in so-

cieties of RAWL·E agents than baseline societies in the al-
lotment harvest with a medium effect of 0.64. The difference
in social welfare is not significant for agresource.

Further, in both scenarios, societies of RAWL·E agents
are more robust than baseline societies; however, the effect is
negligible (0.18 in capabilities harvest and 0.11 in allotment
harvest).
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Table 7: Comparing fitness and numerosity of cooperative norms of baseline and RAWL·E societies in capabilities harvest and
allotment harvest scenarios. Grey highlight indicates best results with significance at p < 0.01.

Scenario Metrics Mean x̄ Standard deviation σ Cohen’s d
Baseline RAWL·E Baseline RAWL·E

Capabilities
Harvest

Fitness 25.61 57.62 41.28 83.44 0.3
Numerosity 14.61 26.58 16.4 20.54 0.25

Allotment
Harvest

Fitness 46.5 64.34 84.59 92.51 0.26
Numerosity 26.32 41.94 24.57 32.28 0.26
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throw

low days throw
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low days throw

low health
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(a) Baseline norms

medium health
no berries move
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throw
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low days eat

low health
no berries move

medium berries eat

high health
no berries move

throw

(b) RAWL·E norms

Figure 6: N for capabilities harvest over eepochs. blue highlights cooperative norms. In societies of RAWL·E agents, more
generalised cooperative norms emerge than in baseline societies. For example, in Figure 6b the general norm of “IF high health
THEN throw” emerges.
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Figure 7: N for allotment harvest over eepochs. blue highlights cooperative norms. In societies of RAWL·E agents, cooperative
norms which emerge are more generalised than in baseline societies.

13



Table 8: Comparing agresource, inequality, minimum experience, and robustness of baseline and RAWL·E societies in capabilities
harvest and allotment harvest scenarios. Grey highlight indicates best results with significance at p < 0.01.

Scenario Metrics Variable Mean x̄ Standard deviation σ Cohen’s d
Baseline RAWL·E Baseline RAWL·E

Capabilities
Harvest

M1 Inequality agwell-being 0.12 0.07 0.04 0.02 1.58
agresource 0.09 0.04 0.1 0.05 0.63

M2 Minimum experience agwell-being 5.81 7.69 0.36 0.62 3.71
agresource 3.62 3.98 2.41 2.52 0.15

M3 Social welfare agwell-being 35.25 37.05 3.62 4.39 0.45
agresource 16.52 16.96 10.41 10.43 0.04

M4 Robustness 38.07 40.5 14.15 13.48 0.18

Allotment
Harvest

M1 Inequality agwell-being 0.2 0.1 0.08 0.04 1.58
agresource 0.14 0.06 0.08 0.03 1.32

M2 Minimum experience agwell-being 7.18 10.82 0.23 1.65 3.09
agresource 3.79 4.5 2.43 2.73 0.27

M3 Social welfare agwell-being 51.5 59.8 9.9 15.41 0.64
agresource 18.94 20.6 11.35 12.28 0.14

M4 Robustness 47.36 48.19 7.67 6.94 0.11
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