
Toward Effective Adoption of Secure Software

Development Practices

Shams Al-Amin†, Nirav Ajmeri‡, Hongying Du‡, Emily Z. Berglund†,
Munindar P. Singh‡

†Department of Civil, Construction, and Environmental Engineering, ‡Department of
Computer Science, North Carolina State University, Raleigh, NC 27695

Abstract

Security tools, including static and dynamic analysis tools, can guide software
developers to identify and fix potential vulnerabilities in their code. How-
ever, the use of security tools is not common among developers. The goal of
this research is to develop a framework for modeling the adoption of security
practices in software development and to explore sanctioning mechanisms
that may promote greater adoption of these practices among developers.
We propose a multiagent simulation framework that incorporates developers
and manager roles, where developers maximize task completion and com-
pliance with security policies, and the manager enforces sanctions based on
functionality and security of the project. The adoption of security practices
emerges through the interaction of manager and developer agents in time-
critical projects. Using the framework, we evaluate the adoption of security
practices for developers with different preferences and strategies under in-
dividual and group sanctions. We use a real case study for demonstrating
the model and initialize the occurrence of bugs using a 13 year database of
bug reports for the Eclipse Java Development Tools. Results indicate that
adoption of security practices are significantly dictated by the preferences of
the developers. We also observed that repetitive sanctions may cause lower
retention of developers and an overall decrease in security practices. The
model provides comparison of security adoption in developers with different
preferences and provides guidance for managers to identify appropriate sanc-
tioning mechanism for increasing the adoption of security tools in software
development.

Keywords:

Preprint submitted to Elsevier February 15, 2018



Multiagent system, security practices, adoption, decision theory, sanction

1. Introduction

Secure software development tools, or security tools, are programs that
analyze software to help developers find and fix vulnerabilities [1, 2]. Such
tools may analyze software code, find vulnerabilities [3, 4], warn developers
of probable violations of coding standards [5], or find programming errors
through static (FindBugs) [6] or dynamic analysis (Valgrind plugins) [7]. To
illustrate the functionality and advantages of a static security analysis tool,
consider FindBugs as an example. FindBugs can be run as a plug-in for the
Eclipse and NetBeans integrated development environments, using Ant or
Maven, from the command line or as a separate tool on its own [1, 8, 9].
FindBugs can group each bug pattern into a category of correctness, bad
practice, performance, or internationalization, and prioritizes bugs as high,
medium, or low. Findbugs also offers a few fixes. However, despite the
advantages of these tools, the use of security tools is not common among
developers [2]. In a survey [10], 60% developers responded that in their
organization developers run FindBugs in an ad-hoc way, 80% responded that
there is no policy on how soon each FindBugs issue must be human-reviewed,
and 83% responded that FindBugs warnings are not inserted into a separate
bug-tracking database in their organization.

Adoption of security practices. Previous research that looked into the adop-
tion of security practices are based on quantitative data collected through
surveys. Witschey et al. [2] collected quantitative data on the relative im-
portance of factors through an online survey of software developers. They
identified 39 factors that affect adoption. These are social system factors
such as security concern and awareness, policies and standards, structures,
education and training, and culture; innovative factors such as relative ad-
vantage, observability, complexity, and trialability; communication channel
factors such as trust and exposure; and potential adopter factors. They built
a combined logistic regression model using the 39 factors and found six fac-
tors are statistically significant. The six significant factors are observability,
advantages, policies, inquisitiveness, education and exposure. Kina et al. [5]
analyzed the decision criteria of software developers based on prospect the-
ory and concluded that developers avoid selecting tools if the probability of

2



the effect of the tools is unknown. Araújo et al. [11] investigated the effec-
tiveness of existing bug prediction approaches with procedural systems and
compared their effectiveness using standard metrics, with adaptations when
needed. Ayewah et al. [10] pointed out that the users’ willingness to review
warnings and fix issues also depends on the characteristics and organization
of the project, the time investment they are willing to put into each review,
and their tolerance for false positives.

Although surveys can help explore the factors influencing adoption, it
is logistically challenging to observe how each developer works in real time.
Simulation can explore and predict adoption patterns in different scenarios.
Simulations based on technology acceptance model [12, 13], diffusion of in-
novation model [14, 15], and application of social network theories [16, 17]
and decision theories [18, 19, 20] have been successfully used in modeling
adoption and can be useful in understanding adoption of security practices
in software development. Dignum and Dignum [21] proposed to use ideas
from social practice theory to support reasoning about action and planning
of intelligent agents in a social context. From a decision theory perspective,
the factors that influence adoption of security practices can be viewed as a
developer’s individual preferences and the perceived utility of using security
practices. While a developer will prefer using security tools only if it leads
to a rationally rewarding outcome for his or her individual utility, a manager
who oversees the adoption and the overall quality of the outcome may offer
rewards or punishments, because the security of the end product depends on
the security practices. We propose a rational decision making framework to
explain the adoption of security practices by developers. The model simu-
lates individual developers’ preferences and decision making based on their
perceptions of the advantages of security tools. The model also includes a
manager who has full observability of the adoption practices and implements
a sanction mechanism that enforces a policy to use security practices to meet
a specified standard.

Norms and Sanction. We recognize the term, norms, to describe “directed
normative relationships between participants in the context of an organiza-
tion” [22, 23]. Norms are powerful means for regulating interactions among
autonomous agents [24, 25, 26]. Social interactions form norms which are in-
fluential in dictating what behaviors are expected in a community and of the
system [27, 28]. Failure to comply with normative expectations is met with
a sanction, which is a consequence for norm violation applied to a principal

3



or group of principals, by a sanctioning agent. A sanction may be positive
or negative and is manifested in reprimand or reward, respectively [29]. In
the context of the developers’ adoption environment, a norm violation would
be met with a negative sanction. When an individual is singled out and
censured for defecting against a norm, we recognize this as an individual
sanction. Alternatively, when a sanction is applied to a group of individuals
for actions of a subset of that group, we recognize this as a group sanction,
also known as collective sanction [30].

Example 1. Consider Alex, Barb, Charlie, and Dave, who are software de-
velopers working as a team to deliver a product. Erin is their manager. Erin
divides the project into multiple tasks and assigns those to the developers.
Erin wants to make sure the product is delivered on time and meets function-
ality and security requirements. Erin and her team use FindBugs to identify
security bugs. Alex and Barb are experienced developers who use security
tools. Charlie and Dave are new to the team and not aware of security prac-
tices.

Consider a scenario, where Charlie and Dave learn to use FindBugs. Ev-
eryone follows the standard security practices and delivers the product on
time. Once the product is launched, its functionality and security are found
as satisfactory. Erin rewards her team and encourages everyone to continue
following security practices.

Now consider a second scenario where the project is time-critical, and
Charlie skips executing FindBugs to deliver the product just with required
functionality. This can lead to multiple alternatives: (1) Once the product
is launched, it is flagged for security concerns. Erin identifies that Charlie
did not follow the standard security practices on the concerned artifacts
and scolds him. Charlie realizes the importance of using security tools. (2)
Based on the evaluation, Erin scolds her team to use security tools in future.
(3) Alex finds out that Charlie is not following the security practices and
prompts him to use security tools. The illustrative example can be used to
distinguish among individual, group and peer sanctions. Erin sanctioning
Charlie is an example of individual sanction where the manager monitors
and sanctions individuals who do not follow a norm. Erin scolding everyone
can be considered as a group sanction where the sanctions are imposed on
a whole group regardless of who in the group violated or satisfied a norm.
Alex prompting Charlie is an example of peer sanction where a peer sanctions
another peer.

4



Multiagent Systems. Norms are used to regulate agent behavior and facili-
tate collaboration in open MASs [31, 32]. Savarimuthu and Cranefield [33]
surveyed simulation models of norms in multiagent systems and proposed
five phases of the norm life-cycle based on a socio-computational viewpoint.
These are norm creation, identification, spreading, enforcement and emer-
gence. Savarimuthu et al. [34, 35] further proposed a framework for social
norm emergence in virtual agent societies. They argue that norms can be
established through a bottom-up process based on a distributed, peer to peer
punishment mechanism and demonstrate that the mechanism works on top
of dynamically created networks. Dam and Winikoff [36] compare prominent
agent-oriented methodologies based on an attribute-based framework which
address four major areas of concepts, modeling language, process and prag-
matics. Dam and Ghose [37] present a framework that supports designers
in evolving software models in a collaborative modeling setting built upon
the well-known Belief Desire Intention agent architecture. Meyer et al. [38]
provide a general framework for multiagent context-sensitive merging and
also investigate the link between such merging operations and the aggre-
gation operations studied in social choice theory. Ghose et al. [39] outline
a methodology for identifying the optimization norms that underpin other
norms and then define a notion of compliance for optimization norms, as well
as a notion of consistency and inconsistency resolution. Multiagent modeling
has also been widely used in software development [40, 41, 42, 43, 44]. How-
ever, few studies [22] explore the adoption of security practices in software
development. Our research fills this gap.

Contributions. The research addresses the following research question: Which
sanctioning mechanism promotes greater adoption of security practices? We
provide a model that simulates the adoption of security tools among devel-
opers. The model can be applied to identify appropriate sanctioning mech-
anism for increasing the use of security tools among a group of developers
with heterogeneous skills. Model output demonstrates the emergence of the
adoption and use of security tools by simulating the system dynamics as the
interactions among developers and a manager in the completion of project
tasks.

Organization. Section 2 describes the security practices adoption model. Sec-
tion 3 details the simulation, and section 4 presents the experiments and their
results. Section 4.5 discusses the limitations of the framework and threats to
validity and section 5 concludes with important future directions.

5



2. Security Practices Adoption Framework

The framework simulates the dynamic interactions between developers
and a manager in a time-critical project. Figure 1 shows the interactive
modules of our framework.

Actor

Manager

Developer

Task

Code

Security

Sanction

Individual

Group

Figure 1: Conceptual Model of Security Practices Adoption Framework

Definition 1. The security practices adoption framework O =< L,A, P,M,E >
contains five entities: L is the lab, or an organization, where agents reside
in. A is a set of developer agents who perform tasks pertaining to a time-
critical project. Each task corresponds to an artifact of a product P . M is a
manager agent who monitors the coding and security practices of the agents
and sanctions agents based on the functionality and security of the product.
E is everything outside of the lab.

The following sections describe the attributes and actions of the manager
and developer agents.

2.1. Manager

Manager agent is in charge of assigning tasks and sanctions.

2.1.1. Assign Tasks

Modern software development is mostly based on an incremental and
iterative approach in which software is developed iteratively, or through re-
peated cycles, and in small sections at a time [45]. We assume each part of
a software corresponds to a task. A task in our model can be in one of the
three states: NotCoded, Coded, Tested, as shown in Figure 2. NotCoded
indicates the task has not yet been adequately coded, Coded represents an

6



Not Coded Coded Tested

Code Security (bug not found)

Security (bug found)

Figure 2: Task States

agent performed Code action on the task but not tested for bugs, and Tested
indicates that an agent performed Security action, i.e., running security tools
on the task and no bugs were found. A task has the following attributes:

Minimum skill required to code. Each task has an associated minimum
skill required to code. If a developer’s coding skill is higher than that
required skill, it can perform Code action on that task. A developer
can perform the action LearnCode to increase its skill of coding.

Minimum skill required to run security tools. Each task has an asso-
ciated minimum skill required to perform Security action. If a devel-
oper’s security skill is higher than that required skill, it can perform
Security action on that task. A developer can perform LearnSecurity
action to increase its skill of using security tools.

Time required to code. Each task has an associated time required to code.
The time is inversely proportional to the coding skill of a developer.

Time required to run security tools. Each task has an associated time
required to run security tools. The time is inversely proportional to
the security skill of a developer.

To reduce the dimensionality of the complex problem, tasks are assumed
to be atomic. Each task corresponds to an artifact. An artifact, Artj, corre-
sponding to task Tj, has two attributes—functionality (indicates how func-
tional the artifact is) and security (indicates how secure the artifact is). In
our model, functionality of an artifact is computed as a function of the cod-
ing skill of the corresponding developer agent. Security of the artifact is a
function of the skill of using security tools of the developer agent, whether
or not Code and Security action is performed, and whether bugs are found
in the artifact.

7



2.1.2. Assign Sanctions

Sanctions can be individual or group sanctions. In individual sanction-
ing, developers are subjected to sanctions individually, if they fail to deliver
artifacts with the standard set by manager. In a group sanction, the man-
ager only monitors the overall product and sanctions every developer if the
product does not meet the standard. Sanctions are applied in the following
two cases:

For functionality. The manager monitors functionality of the artifacts pe-
riodically and imposes sanctions to (1) individual developer agents who
produce artifacts with less functionality than the threshold standards
set by the manager (individual sanction) or (2) all developers if the
overall product functionality is less than the project threshold stan-
dard (group sanction).

For security. Similar to functionality, the manager monitors security of the
artifacts periodically and imposes individual or group sanctions.

For both. The manager monitors functionality and security both- of the
artifacts periodically, and imposes individual or group sanctions for
not meeting any one of the standards.

2.2. Developer Agents

Each developer agent has four attributes:

Tasks. Task are works assigned to a developer agent by the manager agent.
The duration of time available to a developer agent to complete the
assigned tasks is the deadline. Here, “complete” means both “Code”
action and “Security” action are performed on a task. The deadline
also marks the end of a project. There are multiple projects in each
simulation.

Coding and Security skills. Each developer has a skill of coding and us-
ing security tools. The time taken to code or run security tools de-
creases with an increase in the corresponding skill, and developers can
increase their skills by performing LearnCode or LearnSecurity ac-
tions.

8



Developer health. It represents a developer agent’s health and varies ac-
cording to the completion of the tasks assigned to the agent. The initial
value is 100, which is also the maximum health value. An agent’s health
is subject to change in the model for the following reason: if an agent
is unable to meet the functionality and security standards within the
deadline, health is reduced proportionally. A threshold of the health is
set, below which an agent is considered “dead” and needs to leave the
lab. If an agent leaves, it is no longer be able to perform any action
and will never return to the simulation [22].

Preference. It is the probability that an agent will choose to do an action
[22]. For example, if an agent’s preference is 40% for coding, 20% for
using security tools, 20% for learning coding and 20% for learning secu-
rity tools, it has a 40% chance of considering the Code action and 20%
chance of considering the Security, LearnCode, and LearnSecurity
actions. The sum of the preferences is unity.

Definition 2. A developer agent can choose to perform one of the fol-
lowing actions at each time step. Actions = {Code, Security, LearnCode,
LearnSecurity,DoNothing}. Actions are described in detail below.

Code. A task changes from NotCoded to Coded state when the assigned
developer agent performs Code action on the task.

Security. When a developer agent performs Security action on a task, the
task state changes from Coded to Tested if no bugs are found. If there
are bugs, the state changes from Coded to NotCoded.

LearnCode. The action LearnCode increases the skill of coding of an agent.
It results in a decrease in the time to perform Code action on a task
and increases the functionality of the corresponding artifact.

LearnSecurity. The action LearnSecurity increases the skill of using secu-
rity tools. It results in decrease in time to perform Security action on
a task and increases the security of the corresponding artifact.

DoNothing. A rational agent may DoNothing if there is any reward for
doing nothing or all the tasks in a project are Coded and Tested.

9



3. Simulation Experiments

The following sections describe characteristics of the simulation experi-
ments.

3.1. Assumptions and Simulation Settings

The following section discusses several assumptions regarding our exper-
iment. We understand these variables are not arbitrary and we do not trivi-
alize the significance of these variables. Further research and data collection
should be conducted to replace the assumed variables with refined values.
However, as the nature of our simulation is exploratory, we have intuitively
assigned values to these variables to demonstrate the dynamics of the frame-
work. These assumptions and other related parameters are as follows:

• The manager has full observability of the system. A developer agent
has observability only about tasks assigned to it and its own attributes.

• Developers perform tasks in the order they are assigned. A developer
considers coding a task only if its prior task is Coded.

• The skill of coding and the skill of running security tasks of a developer
are independent. Each skill varies in the range of 0 to 100.

• The expected reward of running security tools on a coded task is higher
than the expected reward of coding a task.

• The manager only assigns negative sanctions based on functionality
and security compliance.

3.2. Runtime Actions

The total tasks are distributed equally among the active developers. At
each tick, the following actions occur:

1. Each developer identifies the available actions to perform at that time
tick.

• Action Code is available if there is any task in the NotCoded
state and the corresponding developer’s skill of coding is equal to
or higher than the required skill for the task.

10



Algorithm 1: Developer’s decision and task completion
1: Function Π (developers, tasks, fdecision, fchangestate)
2: decisions ← fdecision (developers, tasks);
3: for all developers in decisions do
4: if decision is to Learn then
5: skills← fupskills (skills, δskill);
6: else if decision is to Code then
7: tasks ← fchangestate (tasks);
8: else if decision is to Security then
9: tasks ← fchangestate (tasks, bugs);

• Action Security is available if there is any task in Coded state
and the corresponding developer’s skill of running security tool is
equal or higher than the required security skill for the task.

• Action LearnCode is available if the corresponding developer’s
coding skill is less than 100.

• Action LearnSecurity is available if the corresponding developer’s
skill of running security tool is less than 100.

2. Each developer compares the expected reward of each action as follows:

Expected reward of Code action RCode. It is the product of units
of task that can be completed with current coding skill within
time remaining (Ncode task), and the reward for coding a unit task
(Rcode task).

RCode = Ncode task ∗Rcode task

Expected reward of Security action RSecurity. It is the product of
units of task that can be tested with the current security skill
within the time remaining (Ntest task), and the reward for testing
a unit task (Rtest task).

RSecurity = Ntest task ∗Rtest task

Expected reward of LearnCode action RLearnCode. It is the prod-
uct of the units of task that can be coded if the current time step
is spent on learning coding (Ncode task if learn), i.e., units of tasks
that can be coded with an increased skill within (time remaining–
1) time steps, and the reward for coding unit task.

RLearnCode = Ncode task if learn ∗Rcode task

11



Expected reward of LearnSecurity action RLearnSecurity. It is the
product of the units of task that can be tested if the current time
step is spent on learning security tools (Ntest task if learn), i.e., units
of tasks that can be tested with an increased skill within (time
remaining -1) time steps, and the reward for testing a unit task.

RLearnSecurity = Ntest task if learn ∗Rtest task

3. Each developer identifies its action. The action with the highest prod-
uct of preference and expected reward is identified by the developer
(function fdecision in Algorithm 1). The state of each developer is up-
dated (function fchangestate) as follows:

• If Code action is performed, a developer remains busy for time
steps equal to the time required for coding that task. After that,
the state of the task changes from NotCoded to Coded. Once a
task state changes from NotCoded to Coded, the functionality of
the corresponding artifact is generated as a random number in the
range of [skill of coding, 100] and the security of the artifact in
the range of [skill of security, 100].

• If Security action is performed, a developer remains busy for time
steps equal to the time required for testing that task. After that,
the state of the task changes from Coded to Tested if no bug is
found and to NotCoded state if any bug is found. The probability
of finding a bug is a random number in the range [0, (100-security
skill)]. Once a task state changes from Coded to Tested, the
security of the corresponding artifact is increased by a percentage
of the skill of security of the corresponding developer.

• If Learn Code or Learn Security action is performed, the corre-
sponding skill of the developer increases.

4. When the time reaches deadline, a project ends and the manager per-
forms sanctions based on compliance of functionality and security re-
quirements (Algorithm 2). When a developer is sanctioned for function-
ality, its preference for Code action and LearnCode action increases,
and when a developer is sanctioned for security, its preference for
Security action and LearnSecurity action increases. A new project
begins at the end of a project.

12



Algorithm 2: Manager’s sanction
1: Function ϑ (developers, Artifacts, threshold, typesanction, fsanction)
2: violations ←fsanction(artifacts, threshold,

Stype);
3: for all artifacts in violations do
4: if developer is sanctioned then
5: preferences←fuppref (preferences, typesanction);

3.3. Scenarios and Metrics

First, we compare the performances of three different types of developers.
The first type of developer agent always selects Code if coding is an option.
They perform LearnCode action only if learning is required. Once all the
tasks are coded, they perform Security action and LearnSecurity action
(only if more learning is required to reach threshold skill). The second type of
developer agent codes a task and runs security tests of the code immediately
when the coding of a task is complete. They learn coding or running security
tools as required. These developer agents start coding the next task when
the previous task is coded and tested. The third type of developer agent
always learns first. These agents learn coding to reach the maximum coding
skill and then learn security to reach the maximum security skills. Once their
skills are at maximum levels, they code and run security tests. We compare
the sanction, sanction efficacy and overall group health for these three types
of developer agents. Because they have predefined strategies, these developer
agents do not learn or change actions in response to sanctions.

Next we consider a group of developers who learn and update their pref-
erences in response to sanctions. We compared three additional group of
developers. The first group of developers have no preference, i.e., the prefer-
ences for Code, Security, LearnCode and LearnSecurity actions are equal
(equal to 25). The second group of developers have higher preference for
coding, that is, the preferences for Code action (85) is higher than the ac-
tions Security, LearnCode and LearnSecurity (each set at 05). The third
group of developers have higher preference for running security tools, that
is, the preferences for Security action (85) is higher than the actions Code,
LearnCode and LearnSecurity (05). The following four metrics are mea-
sured over the course of the simulation:

Tasks tested %. It is the percentage of tasks in a project in which a de-
veloper performed Security action and no bugs are found. In other

13



words, tasks tested (%) is the ratio of tasks in Tested state and total
tasks, measured at the deadline.

Time spent on security tasks %. It is the total time steps spent by all
developers on Security and LearnSecurity actions as a percentage of
the total time steps of the project.

Sanctions %. It is the number of times developers are sanctioned by the
manager as a percentage of maximum number of sanctions possible, in
the simulation.

Sanction efficacy. It is computed as the ratio of the number of developers
that are sanctioned once and the total number of developers in the
simulation. Sanction efficacy implies that the sanctioning changed the
preference of the developer so that it was never sanctioned again.

3.4. Simulation of Bug Reports

To make the simulation more realistic, we incorporated real data. Specif-
ically, we generate a time history of bugs using the bug report data for a
developing software product— Eclipse Java Development Tools [46]. The
report contains bug ids, reported time, summaries, and commits. Because
Eclipse releases new versions around the end of June every year, we consider
a time frame of one year between two releases, which corresponds to a project
in our simulation. We calculated the number of bugs reported each month
and normalized it:

normalized data =
number of bugs

maximum number of its release
∗ 100.

The normalization is to relieve the side effect of fewer bugs in later versions.
We have 149 records of normalized data from October 2001 to February 2014,
which are used to generate the data we used in the simulation. We used the
following formula to generate simulation data from the normalized data:

simulation data = normalized data ∗ random(80, 120)

100
.

For simulation data > 100, we consider it as 100. We generated 50 batches
of simulation data according to the normalized data to be used in 50 sim-
ulations. Each simulation contains 10 project cycles, where each cycle in
equivalent to one year of records. Each project cycle is assumed to run for
60 time steps. The experiment parameters are described in Table 1.

14



Table 1: Experiment parameters

Parameter Value

No of simulations 50
No of projects 10
No. of Developers 100
Tasks per project 500
Project duration 60
Preference for coding for coding preferred 85
Preference for other action for coding preferred 05
Preference for testing for testing preferred 85
Preference for other action for testing preferred 05
Preference for all actions for no preferences 25
Maximum skill 100

Variables with normal distribution µ (σ)

Time required to code a task 6 (1)
Time required to test a task 5 (1)
Skill of developers (initialization) 50 (5)
Skill required for a task (initialization) 50 (5)
Health of developers (initialization) 95 (5)

4. Evaluation

4.1. Emergence in Developers’ Responses

The security adoption is not dominated by the skills of developers; rather
it emerges through the complex and dynamic interactions among the skills of
developers, their preferences, task properties, and task assignments. Security
actions and tasks tested vary across scenarios. Developers with preferences
and developers with fixed strategy are similar in actions and tasks tested for
the no sanction scenarios. Because of the differences in adaptive responses,
their responses vary under sanctions as demonstrated in Figure 3-6. Results
demonstrated through these figures are further described in the following
sections.

4.2. Fixed vs Adaptive Developers

We compare the performances of developers with different fixed strategies
and preferences. Figure 3a and 3b show the mean percentage of tasks tested

15



Figure 3: Tasks (a) coded (b) tested and (c) security activities for no sanction scenario
of fixed strategy developers (Strategy 01 is Code⇔LearnCode→Security⇔LearnSecurity,
Strategy 02 is Security⇔LearnSecurity→Code⇔LearnCode, Strategy 03 is
LearnCode→LearnSecurity→Code→Security)

16



Figure 4: (a) Sanctions, and (b) Health for no sanction scenario of fixed strat-
egy developers (Strategy 01 is Code⇔LearnCode→Security⇔LearnSecurity,
Strategy 02 is Security⇔LearnSecurity→Code⇔LearnCode, Strategy 03 is
LearnCode→LearnSecurity→Code→Security)

17



and coded, respectively, by a developer in a project, and Figure 3c shows
the corresponding security activities measured as percentage of Security
and LearnSecurity actions performed in each timestep. The mean is cal-
culated for 50 simulations. Among the fixed strategies, developers who per-
form Security or LearnSecurity actions first (strategy 2) and then perform
Code and LearnCode actions have the highest mean of percentage of tasks
tested (19%). This group of developers also has the highest mean of percent-
age (50%) of security activities among the three strategies compared. The
group of developers who perform Code or LearnCode first, and then perform
Security or LearnSecurity actions has the highest mean percentage (93%)
of tasks coded but also the lowest percentage (1.4%) of tasks tested. This
group also spends the least amount of time on security activities (4%), as
shown in Figure 3.

Among the adaptive developers, or developers that update their prefer-
ences when sanctioned (Figure 5), developers with no preferences or prefer-
ences for testing have a higher mean of percentage of tasks tested (10.9%
and 11.1%) and security activities (28%), compared to developers with pref-
erence for coding (1.4% tasks tested and 4.4% security activities). As shown
in Figure 3b, the 10 and 90 percentile values are very close to the mean,
which indicates that most of the simulations produced percentage of tasks
tested close to the mean. The same is true for most of the simulations for
adaptive developers. The highest variations are observed in the case of group
sanctions for security and both scenarios.

Table 2: Changes in tasks tested (%) and security activities (%) with change in preference
over 50 simulations (Tasks coded in no preference, τ1=9.8–12.2 and security activities in
no preference, µ1=27.5–28.1)

Preference Tasks tested (τ2) τ1 > τ2 τ1 < τ2 τ1 6= τ2 at 95% CI

For coding 1.0–1.8 100% 0% 100%

For testing 9.8–12.7 34% 66% 2%

Preference Security activities (µ2) µ1 > µ2 µ1 < µ2 µ1 6= µ2 at 95% CI

For coding 4.3–4.5 100% 0% 100%

For testing 27.7–28.4 4% 96% 0

18



4.3. Preferences

Among the three developer groups with different preferences, developers
with preferences for testing have the highest security practices (27.7-28.4%)
and tasks tested (9.8 to 12.7%). Developers with preferences for coding
have the lowest security practices and tasks tested. Table 2 compares the
tasks tested and security activities across different preferences. As shown,
developers with preference for coding tested less than the developers with
no preference in 100% of the simulations. Developers with preference for
testing tested more than the developers with no preferences in 66% of the
simulations. Similar observations can be made in security activities where
developers with no preference had higher security activities than developers
with no preferences in 100% of simulations and lower than the developers
with preference for testing in 96% of simulations. A two-tailed student’s t-
test assuming unequal variance shows 100% of the simulations have statistical
significance for rejecting the null hypothesis that the means of tasks tested
and security activities are equal to that of developers of coding, whereas only
2% of the simulations can show the same for developers with preference for
testing in case of tasks tested.

19



Figure 5: (a) Tasks tested, (b) Tasks coded and (c) security activities for sanction scenarios
of no preference, preference for coding and preference for testing

20



Figure 6: (a) Sanctions, and (b) Health for for sanction scenarios of no preference, prefer-
ence for coding and preference for testing

21



Table 3: Changes in tasks tested (%) with sanctions over 50 simulations (Tasks tested in no sanction (τ1) for no preference
ranges between 9.8–12.2, for preference for coding between 1.0–1.8 , and for preference for testing between 9.8–12.7)

Preference Sanction Tasks tested (τ2) τ1 > τ2 τ1 < τ2 τ1 6= τ2 at
95% CI

No preference

Individual (functionality) 9.38-12.3 44% 56% 0%

Group (functionality) 9.4–12.0 46% 54% 4%

Individual (security) 8.0–10.9 100% 0% 34%

Group (security) 8.5–12.0 52% 48% 12%

Individual (both) 8.8–11.2 96% 2% 32%

Group (both) 6.1–12.8 62% 38% 30%

Preference for coding

Individual (functionality) 0.9-1.7 70% 24% 0%

Group (functionality) 1–1.8 34% 62% 0%

Individual (security) 0.5–1.1 100% 0% 62%

Group (security) 0.1–0.4 100% 0% 100%

Individual (both) 0.5–1.0 100% 0% 74%

Group (both) 6.1–12.8 100% 0% 100%

Preference for testing

Individual (functionality) 9.7-12.8 46% 54% 2%

Group (functionality) 9.9–12.4 46% 54% 0%

Individual (security) 8.5–11.1 94% 6% 34%

Group (security) 6.2–12.2 58% 42% 32%

Individual (both) 8.7–11.7 100% 0% 24%

Group (both) 6.1–12.7 70% 30% 28%

22



4.4. Sanctions

Figure 4 demonstrates the sanctions and corresponding health under fixed
strategies. As shown in 4a, developers with fixed strategy 1, i.e., developers
who code or learn code first, are sanctioned least. This group of developers
also has the highest percentage of tasks coded. As a task is coded, function-
ality and security values are assigned to the corresponding artifacts (section
3.2. When the developer performs Security action on the same task, the
security value is further increased. However, since the developers in strategy
1 coded significantly higher percentage of tasks than the other two strate-
gies, they ended up less sanctioned. The number of tasks coded (and the
corresponding security value of the artifact) dominated in this case over the
increase of security by performing Security action. This group of developers
have the highest health as shown in 4c. The developers were sanctioned most
for group sanction for security.

Figure 6 shows the sanctions and health of adaptive developers. Similar to
fixed strategies, in this case, the sanctions are also guided by number of tasks
coded. The results highlight the role of the time-constraints for developers
in adoption of security practices. As developers with no preference or pref-
erence for security tested more (10%) tasks but ended with higher sanctions
since they coded less (35%). As shown in figure 6a, across all preferences,
developers are sanctioned highest under the group sanction for functionality
and the group sanction for functionality and security. The mean of develop-
ers’ health is also lowest for these sanctions. The other sanction scenarios
are comparable. Though it is counter-intuitive, the highest sanction does
not yield the highest task tested, shown in Table 3. The repetitive individ-
ual sanction reduces the health of a group of developers, eventually leading
to lower retention of developers and thereby lowering the mean percentage
of tasks tested. The sanctioning for functionality increased the number of
tasks tested for developers with all preferences. The sanctioning for secu-
rity also increased the tasks tested but lower retention of developers through
repetitive sanctions lowered the overall mean.

Sanction efficacy decreases with increase in sanctions. For the scenarios
presented here, sanction efficacy is zero for most sanction cases. Individ-
ual sanctioning for functionality (12.2%) and security (1.5%) have the only
efficacy among the adaptive developers who have preferences for coding.

4.5. Threats to validity

Threats mitigated. We identified and mitigated the three threats.

23



1. Difference in skills. In reality, developers have different skills thus sim-
ulating with same or equal skills introduces a threat of skill difference.
To mitigate the threat of skill difference, we seed the simulation with
developers with different skills.

2. Difference in developer strategies. Developers working on real projects
do not work in the same way to complete the assigned tasks. Thus
simulating with only one strategy introduces the threat of difference
in developer’s strategy. To mitigate this threat, we compare develop-
ers with various fixed and adaptive strategies under different sanction
mechanisms.

3. Reliability of the data. Since we simulate the task assignment and
probability of bugs, a threat is whether the data or the value of the
variables seeded in the simulation is reliable. To mitigate this threat
of reliability of the data, we seed the simulation based on real data of
Eclipse Java Development Tools bug reports spanned across a period
of 13 years [46].

The research conducted here relies on a number of assumptions. First,
we assumed that all the developers in the organization use only one secu-
rity analysis tool. Thereby, by learning they can improve their skill of using
that particular tool. The improvement in skill for different developers in the
organization due to learning was also assumed to be the same. In reality,
different developers may prefer using different security analysis tools and the
improvements in skill might be different for spending the same amount of
time in learning. Second, we assumed that a developer can only perform one
action at a time tick. In reality, developers may accomplish multiple tasks
simultaneously, for example, they can run a security tool, and simultaneously
read a tutorial till the security tool completes its execution. Third, we as-
sumed monotonic functions for changes in health, preferences, and skills of
developers in response to sanctions. The changes may vary in time and in
person to better represent reality. Fourth, we assumed only negative sanc-
tions in this study. Positive sanctions may influence preferences and health of
a developer, as well. In general, evaluating software quality is a complex pro-
cess [47, 48, 49] that may have time delay and may impact the vulnerability
of the code. To reduce dimensionality of the analysis, we assumed that the
manager receives evaluation of functionality and security performances of the
product immediately after product release and can thereby assign sanctions
toward improving those for the next project.

24



The kinds of knowledge that agent systems rely on require specialized ma-
chinery, both for knowledge mining and by way of instrumentation for data
collection [50]. We propose a framework for modeling MAS for sanction-based
adoption of security practices here. Collecting real-life data to better inform
the modeling may include developer surveys and analysis of time sheets that
explain distribution of time spent by developers in coding, running secu-
rity tools, learning and other work. Surveys can also be designed to assess
developers’ preferences, and interviews can be conducted with managers to
characterize sanction mechanisms that are used to mitigate the quality and
timeliness of project deliverables.

5. Discussion

Our framework aims to simulate the adoption of security practices among
developers toward assessing sanctioning mechanisms. We have presented a
novel approach using concepts of decision theory to model the adoption of
security practices. We have further demonstrated the application of the
framework by using real world data for bug reports from for Eclipse Java
Development Tools [46]. The study compares the security practices under
different sanctioning mechanism at different levels by comparing tasks that
are tested using security tools, time spent on security practices, and over-
all changes under sanctions. It also assists in comparing functionality and
security compliance in different projects for different sanctions by analyz-
ing the recurrence of norm violation after sanctioning and monitoring de-
velopers’ health under different sanctioning mechanism. Our exploration of
system level performance through variable sanction type has yielded some
interesting conjectures. For example, we observed that security practices of
developers are significantly dictated by preferences of developers. We also
observed that repetitive sanctioning may yield lower retention of developers
and reduce overall security practices.

Previous studies highlight the role of social factors in adoption of secu-
rity practices. A survey-based study observed that inquisitiveness may play
a strong role in adoption of security practices[2]. The same study also ob-
served that the perceived importance of security may not influence adoption
as much as other factors[2]. Another survey-based study [10] observed that
users working on web applications have different priorities from those work-
ing on desktop applications and that the adoption may vary over time while
it is under development to near release. In our framework, we have associated

25



the adoptions of security practices to preference of developers. The prefer-
ence may vary across developers and over time as the perceived utility of
security practices change. Using real-world data we have demonstrated with
statistical significance that if developers have preference for coding than that
for learning or running security tests, they may end performing less security
actions and testing less tasks for bugs.

Organizational factors may also play an important role in the adoption
of security practices [51]. Each organization may have policies and stan-
dard pertaining to the security practices. Previous studies observed that
users’ willingness to review warnings and fix issues depends on project char-
acteristics and organization [10]. We demonstrate the role of organizational
interference in promoting security practices through the inclusion of a man-
ager agent and the sanction mechanisms. The developers in the framework
may have different skill-level and the performance of the artifacts depend
on the corresponding developer. When the performance of the overall prod-
uct is evaluated, the developers may be subjected to (group) sanction. The
sanction may change the preference and the health of the developer which
impacts the selection of actions in the following project and the coding and
security performance of the groups. We observed the sanction mechanism,
standards and frequencies of the manager agent has impacts on developers’
preference, actions and overall security performance of the product. There
are many discussions in literature that looks into the role of sanctions in
shaping moral judgments and compliance norms [30, 52]. Our study ob-
serves that repetitive sanctions may eventually reduce adoption of security
practices in cases where the health falls below certain threshold.

The framework can be applied to identify the best management inter-
vention techniques to improve security practices. Many organizations keep a
formal record of developer activities in the form of a time sheet which can be
utilized to track developer activities through out a project cycle. The skill
and preference of developers can be assessed based on performance and pre-
vious choices of actions in similar projects. Survey and interviews of manage-
ment professionals may also be useful in identifying the impacts of sanctions.
One interesting extension of this study could be to look into decentralized
optimizations of security practices to maximize the security performances of
the end product. Incorporation of multidisciplinary concepts from decision
theories and measuring resilience and liveliness of the system in connection
to the sanctions, among others, will help to get a holistic view of the system
to guide effective sanctions toward security practices.

26



Acknowledgment

We thank Jon Doyle for help and guidance in developing the model. We
thank Laurie Williams, William Enck, Özgür Kafalı, David Wright, Christo-
pher Theisen, Sarah Elder, Lena Leonchuk, Lindsey McGowen and the Sci-
ence of Security lablet for the feedback. We thank the US Department of
Defense for support through the Science of Security Lablet grant to North
Carolina State University and the anonymous reviewers for helpful comments.

[1] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge, Why don’t software
developers use static analysis tools to find bugs?, in: Proceedings of the
35th International Conference on Software Engineering, IEEE Press,
San Francisco, 2013, pp. 672–681.

[2] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, T. Zim-
mermann, Quantifying developers’ adoption of security tools, in: Pro-
ceedings of the 10th Joint Meeting on Foundations of Software Engi-
neering (FSE), ACM, Bergamo, Italy, 2015, pp. 260–271.

[3] Klocwork: Source code analysis tool, online; accessed 30-May-2017
(2017).
URL https://www.klocwork.com/products-services/klocwork

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, D. Engler, A few billion lines of code later:
Using static analysis to find bugs in the real world, Communications of
the ACM 53 (2) (2010) 66–75.

[5] K. Kina, M. Tsunoda, H. Hata, H. Tamada, H. Igaki, Analyzing the
decision criteria of software developers based on prospect theory, in:
Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1, Osaka, Japan, 2016, pp.
644–648.

[6] D. Hovemeyer, W. Pugh, Finding bugs is easy, ACM Sigplan Notices
39 (12) (2004) 92–106.

[7] N. Nethercote, J. Seward, Valgrind: A framework for heavyweight dy-
namic binary instrumentation, in: ACM Sigplan notices, Vol. 42, ACM,
2007, pp. 89–100.

27



[8] NetBeans IDE, online; accessed 30-May-2017 (2017).
URL http://www.netbeans.org

[9] Eclipse, online; accessed 30-May-2017 (2017).
URL http://www.eclipse.org/

[10] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, W. Pugh,
Using static analysis to find bugs, IEEE software 25 (5).

[11] C. W. Araújo, I. Nunes, D. Nunes, On the effectiveness of bug predictors
with procedural systems: A quantitative study, in: International Con-
ference on Fundamental Approaches to Software Engineering, Springer,
2017, pp. 78–95.

[12] V. Venkatesh, F. D. Davis, A theoretical extension of the technology
acceptance model: Four longitudinal field studies, Management Science
46 (2) (2000) 186–204.

[13] P. Legris, J. Ingham, P. Collerette, Why do people use information tech-
nology? a critical review of the technology acceptance model, Informa-
tion & management 40 (3) (2003) 191–204.

[14] R. W. Zmud, Diffusion of modern software practices: Influence of cen-
tralization and formalization, Management Science 28 (12) (1982) 1421–
1431.

[15] E. M. Rogers, Diffusion of innovations, Simon and Schuster, 2010.

[16] G. Madey, V. Freeh, R. Tynan, The open source software development
phenomenon: An analysis based on social network theory, AMCIS 2002
Proceedings (2002) 247.

[17] P. J. Carrington, J. Scott, S. Wasserman, Models and methods in social
network analysis, Vol. 28, Cambridge university press, 2005.

[18] R. W. Selby, A. A. Porter, Learning from examples: Generation and
evaluation of decision trees for software resource analysis, IEEE Trans-
actions on Software Engineering (TSE) 14 (12) (1988) 1743–1757.

[19] G. Büyüközkan, D. Ruan, Evaluation of software development projects
using a fuzzy multi-criteria decision approach, Mathematics and Com-
puters in Simulation 77 (5) (2008) 464–475.

28



[20] J. O. Berger, Statistical decision theory and Bayesian analysis, Springer
Science & Business Media, 2013.

[21] V. Dignum, F. Dignum, Contextualized planning using social practices,
in: International Workshop on Coordination, Organizations, Institu-
tions, and Norms in Agent Systems, Springer, 2014, pp. 36–52.

[22] H. Du, B. Narron, N. Ajmeri, E. Berglund, J. Doyle, M. P. Singh, Under-
standing sanction under variable observability in a secure, collaborative
environment, in: Proceedings of the 2015 Symposium and Bootcamp on
the Science of Security (HotSoS), ACM, Urbana-Champaign, 2015, pp.
12:1–12:10.

[23] M. P. Singh, Norms as a basis for governing sociotechnical systems,
ACM Transactions on Intelligent Systems and Technology (TIST) 5 (1)
(2013) 21:1–21:23.

[24] M. Mashayekhi, H. Du, G. F. List, M. P. Singh, Silk: A simulation study
of regulating open normative multiagent systems, in: Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI),
AAAO Press, New York, 2016, pp. 373–379.

[25] J. Morales, M. López-Sánchez, J. A. Rodŕıguez-Aguilar, M. Wooldridge,
W. W. Vasconcelos, Minimality and simplicity in the on-line automated
synthesis of normative systems, in: Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
IFAAMAS, Paris, 2014, pp. 109–116.

[26] J. Morales, M. López-Sánchez, J. A. Rodŕıguez-Aguilar, M. Wooldridge,
W. W. Vasconcelos, Synthesising liberal normative systems, in: Proceed-
ings of the 14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), IFAAMAS, Istanbul, 2015, pp. 433–441.

[27] D. Avery, H. K. Dam, B. T. R. Savarimuthu, A. Ghose, Externalization
of software behavior by the mining of norms, in: Proceedings of the 13th
International Conference on Mining Software Repositories, ACM, 2016,
pp. 223–234.

[28] T. Keller, B. T. R. Savarimuthu, Facilitating enhanced decision sup-
port using a social norms approach, Journal of Electronic Commerce in
Organizations (JECO) 15 (2) (2017) 1–15.

29



[29] P. Noriega, A. K. Chopra, N. Fornara, H. L. Cardoso, M. P. Singh, Reg-
ulated MAS: Social Perspective, in: G. Andrighetto, G. Governatori,
P. Noriega, L. W. N. van der Torre (Eds.), Normative Multi-Agent Sys-
tems, Vol. 4 of Dagstuhl Follow-Ups, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2013, pp. 93–133.

[30] D. D. Heckathorn, Collective sanctions and compliance norms: A formal
theory of group-mediated social control, American Sociological Review
55 (3) (1990) 366–384.

[31] L. G. Nardin, T. Balke-Visser, N. Ajmeri, A. K. Kalia, J. S. Sichman,
M. P. Singh, Classifying sanctions and designing a conceptual sanction-
ing process model for socio-technical systems, The Knowledge Engineer-
ing Review (KER) 31 (2016) 142–166.

[32] M. Xenitidou, B. Edmonds, The complexity of social norms, Springer,
2014.

[33] B. T. R. Savarimuthu, S. Cranefield, Norm creation, spreading and emer-
gence: A survey of simulation models of norms in multi-agent systems,
Multiagent and Grid Systems 7 (1) (2011) 21–54.

[34] B. T. R. Savarimuthu, S. Cranefield, M. K. Purvis, M. A. Purvis, Norm
emergence in agent societies formed by dynamically changing networks,
Web Intelligence and Agent Systems: An International Journal 7 (3)
(2009) 223–232.

[35] B. Savarimuthu, M. Purvis, M. Purvis, S. Cranefield, Social norm emer-
gence in virtual agent societies, Declarative Agent Languages and Tech-
nologies VI (2009) 18–28.

[36] K. H. Dam, M. Winikoff, Comparing agent-oriented methodologies, in:
Agent-Oriented Information Systems, Springer Berlin Heidelberg, 2004,
pp. 78–93.

[37] H. K. Dam, A. Ghose, An agent-based framework for distributed collabo-
rative model evolution, in: Proceedings of the 12th International Work-
shop on Principles of Software Evolution and the 7th annual ERCIM
Workshop on Software Evolution, ACM, 2011, pp. 121–130.

30



[38] T. Meyer, A. Ghose, S. Chopra, Multi-agent context-based merging, in:
Proceedings of Common Sense, 2001.

[39] A. Ghose, T. B. R. Savarimuthu, Norms as objectives: Revisiting com-
pliance management in multi-agent systems, in: International Workshop
on Coordination, Organizations, Institutions, and Norms in Agent Sys-
tems, Springer Berlin Heidelberg, 2012, pp. 105–122.

[40] J. Liu, Z. Wei, Agent-based computation of decomposition games with
application in software requirements decomposition, in: Multi-agent and
Complex Systems, Springer, 2017, pp. 165–179.

[41] J. Rajamäki, Cyber security, trust-building, and trust-management: As
tools for multi-agency cooperation within the functions vital to society,
in: Cyber-Physical Security, Springer, 2017, pp. 233–249.

[42] H. Yang, F. Chen, S. Aliyu, Modern software cybernetics: New trends
(2017).

[43] J. B. de Vasconcelos, C. Kimble, P. Carreteiro, Á. Rocha, The appli-
cation of knowledge management to software evolution, International
Journal of Information Management 37 (1) (2017) 1499–1506.

[44] G. D’Angelo, S. Ferretti, Lunes: Agent-based simulation of p2p sys-
tems, in: High Performance Computing and Simulation (HPCS), 2011
International Conference on, IEEE, 2011, pp. 593–599.

[45] M. Choetkiertikul, H. K. Dam, T. Tran, A. Ghose, J. Grundy, Predicting
delivery capability in iterative software development, IEEE Transactions
on Software Engineering.

[46] A. N. Lam, A. T. Nguyen, H. A. Nguyen, T. N. Nguyen, Combin-
ing deep learning with information retrieval to localize buggy files for
bug reports (n), in: Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on, 2015, pp. 476–481.
doi:10.1109/ASE.2015.73.

[47] H.-W. Jung, S.-G. Kim, C.-S. Chung, Measuring software product qual-
ity: A survey of iso/iec 9126, IEEE software 21 (5) (2004) 88–92.

31



[48] E. Van Veenendaal, R. Hendriks, R. Van Vonderen, Measuring software
product quality.

[49] B. W. Boehm, J. R. Brown, M. Lipow, Quantitative evaluation of soft-
ware quality, in: Proceedings of the 2nd international conference on
Software engineering, IEEE Computer Society Press, 1976, pp. 592–605.

[50] A. Ghose, Agents in the era of big data: What the “end of theory”
might mean for agent systems., in: PRIMA, 2013, pp. 1–4.

[51] S. Xiao, J. Witschey, E. Murphy-Hill, Social influences on secure de-
velopment tool adoption: why security tools spread, in: Proceedings of
the 17th ACM conference on Computer supported cooperative work &
social computing, ACM, 2014, pp. 1095–1106.

[52] D. E. Warren, K. Smith-Crowe, Deciding what’s right: The role of ex-
ternal sanctions and embarrassment in shaping moral judgments in the
workplace, Research in organizational behavior 28 (2008) 81–105.

32


