
Aragorn: Eliciting and Maintaining Secure Service Policies

Nirav Ajmeri, Chung-Wei Hang, Simon Parsons, Munindar P. Singh

Abstract

Services today are configured through policies that capture expected behaviors. However,
because of subtle and changing stakeholder requirements, producing and maintaining policies is
nontrivial. Policy errors are surprisingly common and cause avoidable security vulnerabilities.

We propose Aragorn, an approach that applies formal argumentation to produce policies that
balance stakeholder concerns. We demonstrate empirically that, compared to the traditional
approach for specifying policies, Aragorn performs (1) better on coverage, correctness, and
quality; (2) equally well on learnability and effort÷coverage and difficulty; and (3) slightly
worse on time and effort needed. Thus, Aragorn demonstrates the potential for capturing
policy rationales as arguments.

Introduction

Policies are widely employed by organizations to support effective and secure service delivery. Poli-
cies are explicit, inspectable, and readily updatable. However, creating and maintaining policies is
nontrivial: Errors made by system administrators in system configuration cause service provisioning
failures, and introduce security vulnerabilities [9, 14].

Specifically, defining and maintaining policies correctly is nontrivial because correctness depends
upon conflicting and changing stakeholder requirements. Current methods capture policies in a
seat-of-the-pants manner by creating and reordering a list of policies. Previous formal approaches
focus on analysis (to identify anomalies and conflicts) [1, 2].

In contrast, Aragorn focuses on the underlying stakeholder requirements, which current methods
ignore, to guide system administrators in policy creation. Doing so helps capture administrators’
tacit knowledge and facilitates maintenance.

Approach

We propose Aragorn, a general-purpose method for policy creation and maintenance based on
argumentation, to facilitate policy creation. Aragorn incorporates domain-specific argumentation
schemes and provides an evidential basis for balancing competing concerns that might reflect (in-
consistent) stakeholder requirements. In essence, Aragorn models each policy specification as a
decision and represents arguments pro and con that specification. This network of arguments
captures the design rationale for each policy, highlighting dependencies and conflicts between the
policies. The arguments provide guidance for updating policies in light of changing requirements
and changing premises—specifically, in determining which policies to drop, insert, or modify in
light of changes to stakeholder requirements.

Aragorn comprises two main parts. The first is an evidence-based framework that identifies
actions on policies (such as activating or deactivating a policy). Successful argumentation relies

1

upon applying one or more argumentation schemes that identify critical questions that an argument
can raise. Aragorn incorporates argumentation schemes geared toward service security policies, and
provides a simple approach to reasoning about the strength of belief in an argument. Aragorn’s
second part is a methodology that guides developing security policies that are the most defensible
given the premises and arguments.

Successful service delivery involves security and associated policies at multiple levels. For con-
creteness, we consider cloud services and adopt firewall policies to demonstrate Aragorn. Firewalls
are a well-understood setting in which to refine and evaluate methods for creating and maintaining
service policies. Firewalls must be updated in light of new evidence about security threats and
vulnerabilities [9].

Contributions and Findings

The main contribution for this paper is Aragorn, an argumentation-based policy-specification
methodology, and its empirical evaluation. The benefit of Aragorn is that it addresses the challenge
of misconfiguration of policies caused by traditional approaches, which causes avoidable vulnera-
bilities.

We demonstrate Aragorn using a firewall policy modeling scenario. We empirically evaluate
Aragorn via a human-subject study. We find that Aragorn yields improvements over the tradi-
tional approach in measures (defined below) of maintainability, coverage, correctness, effort, and
effort÷coverage. Participants find Aragorn easy to learn and not difficult to apply although it
requires additional effort. We conjecture that aggregated gains in quality compensate for the ad-
ditional time though we expect that effective tool support would mitigate this shortcoming.

Firewall as an Exemplar Domain

Firewalls and firewall policies are important to the security infrastructure of an enterprise. They
form the first line of defense against attacks and unauthorized traffic. Dynamically emerging threats
and requirements force system administrators to continually refine their firewall policies. As for
any security policy, creating and maintaining firewall policies is nontrivial, and a lack of efficient
mechanisms and tools to analyze firewall policies results in policy errors. For instance, Wool [14]
found that despite significant effort by enterprises, firewalls are frequently wrongly configured. The
complexity and challenges involved in defining and maintaining firewall policies makes firewalls an
appropriate choice as the exemplar domain of application for Aragorn.

A firewall controls information flow from and to a computer network. A firewall policy is an
ordered set of rules [2]. Each rule specifies if an incoming or outgoing packet is allowed or blocked,
depending upon its protocol (TCP or UDP), source IP, source port, destination IP, and destination
port. Given a packet, a firewall considers the rules in sequence and then takes the action specified
by the first rule that applies. If that action is not desired, it might result in a breach. Therefore, it is
crucial to order the rules correctly. Table 1 shows a partial firewall policy, and lists the requirements
(R), and the facts (F) for the firewall policy.

Defining and maintaining a firewall policy involves complex decision making. There is a po-
tential for conflicts between policies resulting in anomalies [1]. A rule L generalizes over a rule M
provided L has higher priority than M, every packet that satisfies L also satisfies M, and both rules
specify different actions. For example, in Table 1, Rule 12 generalizes over Rule 9 [2]. Additional

2

firewall anomalies include shadowing, correlation, and redundancy [1]. Some firewall rules are never
executed because of such anomalies.

Table 1: An example firewall policy [2], and associated requirements (R) and facts (F)

Action Protocol Source Port

1 Allow * * 20
2 Allow * * 80
3 Block * locA.example.com 20
4 Allow * * 22
5 Block * * 53
6 Allow TCP locB.example.com 23
7 Block * *.example.com *
8 Allow UDP locB.example.com 5027
9 Allow UDP * *

10 Block * * 6889
11 Allow * example.net 53
12 Block * * *

Description: Requirement or Fact

R Example Inc. requires file transfer
F FTP (port 20), SFTP (port 22) enable file transfer
R Public website, made available via port 80
R Prevent known attacks
F Attacks from locA.example.com, port 20
R Example Inc. requires telnet access
F Telnet requires access to port 23
R Application to access UDP port 5027
R Prevent access to torrent ports
F Torrent uses port 6889
R Enable DNS for example.net
F DNS requires access to port 53

Anomalies in a firewall policy may result in legitimate packets being blocked, and unwanted
packets being allowed. An administrator should resolve any anomalies. However, detecting and
resolving anomalies is tedious and error-prone. Common errors include failing to validate key
assumptions; omitting important evidence; overlooking connections across the available evidence;
and improperly prioritizing conflicting evidence and justifications.

Argumentation and Argumentation Schemes

An argument is constructed and consists of three parts: a conclusion, a set of premises, and an
inference from the premises to the conclusion [4]. Each elementary argument captures a reasoning
step from premises to conclusion. An argument can be supported or attacked by other arguments.
Argumentation involves constructing a network of arguments, where the conclusion of one is a
premise of another. Formal argumentation theory models arguments as first-class entities. An
argument may undermine (contradict the premises of) or rebut (contradict the conclusions of)
another.

An argumentation scheme is a pattern for constructing arguments [12] that represents the
inference structure of an argument and provides critical questions for evaluating if the argument
holds. A critical question captures critical thinking needed to engage in an argument. Specifically, a
decision-maker raises critical questions to find arguments that support or attack another argument.

A decision-maker follows an argumentation scheme to iteratively collect evidence and infer the
veracity of its conclusion until a decision (i.e., whether to accept or reject the conclusion) can be
made. We write a scheme in the following template: 〈Premise,Conclusions,Questions〉.

The practical reasoning argumentation scheme provides a template for a situation where
a decision-maker asserts that action A should be carried out because A is a means to realize
requirement R [12]. We write this scheme as follows:

• Premise (Major) h1: R is a requirement.

3

• Premise (Minor) h2: Action A is a means to realize R.

• Conclusion c: A should be carried out.

This scheme corresponds to these critical questions:

CQ1 What requirements should we consider that might conflict with R?

CQ2 Are alternative means available for carrying out R?

CQ3 Is A more efficient than these alternative means?

CQ4 Is it practically possible to bring about A?

CQ5 What consequences of bringing about A should we take into account?

CQ6 Are other actions, in addition to A, required to bring about R?

These critical questions help identify supporting or conflicting requirements and alternative
and efficient means to realize a requirement. We adopt additional argumentation schemes, such as
arguments by consequence, and arguments from alternatives and opposites to answer these questions.

Aragorn: Evidence-Based Argumentation

The decision-maker’s knowledge base consists of premises and inference rules that are supported
or opposed by available evidence, each piece of evidence being associated with a belief measure. A
belief measure of a premise or inference rule is calculated based on the belief measures of the evidence
that supports or opposes it. The decision-maker applies argumentation schemes to construct an
argument and calculates the belief measure of its conclusion by combining the belief measures.

We adapt a probability-certainty representation of belief [13]. The probability represents the
likelihood that the conclusion is true given the evidence, whereas the certainty measures the amount
of nonconflicting evidence. A sufficiently high certainty indicates the completeness of the argument.

We define the belief measure of a premise or inference rule as in Tang et al. [11].

Definition 1 (Belief Measure Combination) Let hA and hB be premises in Σ with belief mea-
sures 〈bA, dA, uA〉, 〈bB, dB, uB〉, respectively. Let hC be another premise and δ = hA

hC
be an inference

rule with belief measure 〈bδ, dδ, uδ〉. Assume hA and hB are independent. Then,

bA∧B = bAbB

dA∧B = dAdB + dAuB + uAdB

bA∨B = (bA + bB)/2

dA∨B = (dA + dB)/2

bC = bδbA

dC = bδdA

4

By answering a critical question about hi, the decision-maker collects (or updates) evidence
ej ∈ E and associated belief measure 〈bej , dej , uej 〉. The final belief measure of hi can be calculated
by combining belief measures of all the pieces of evidence corresponding to hi. That is, answering
a critical question about hi either increases bhi or dhi , and decreases uhi . Wang et al. [13] provide
additional details about how belief measures are calculated from evidence.

Defining Policies via Aragorn

Besides general argumentation schemes [12], Aragorn uses domain-specific schemes (e.g., the firewall
argumentation scheme), associated critical questions, and related evidence to synthesize arguments.

Constructing Arguments

Table 1 lists requirements underlying a firewall policy, for instance, the Example Inc. needs to
enable file transfer. And, one known fact is that FTP and SFTP enable file transfer. To construct
arguments for these requirements and premises, we adopt the practical-reasoning argumentation
scheme introduced above. From the file-transfer requirement and the fact we conclude that FTP
should be enabled. Further, on answering critical questions associated with the scheme, we find
that FTP needs port 20. Iteratively applying the scheme, we conclude that we need to allow port
20 to support file transfer.

A useful firewall-specific scheme may be expressed as follows [6].

• Evidence E

• Premise h1: Port P on destination H is required by application A

• Premise (Assumption) h2: H is patched to handle vulnerabilities

• Premise (Exception) h3: Vulnerability V on port P

• Premise (Exception) h4: Source S is malicious

• Conclusion c: Allow packet to port P on destination H from S

• Inference Rule δ1:
¬h3
h2

• Inference Rule δ2:
¬h4
h2

• Inference Rule δ3:
h1∧h2
c

Inference rules δ1, δ2, and δ3 are general knowledge required by a computational system; each
may be reasoned about by other argumentation schemes, which calculate the corresponding triple
〈bδ, dδ, uδ〉.

The following critical questions are associated with the firewall scheme.

CQ1. Does any requirement rely upon opening port P?

CQ2. Are there any known security vulnerabilities V?

5

CQ3. Is there any evidence that host H avoids vulnerability V?

CQ4. Is there any evidence that source S is malicious?

We could potentially construct arguments (employing additional argumentation schemes) whose
conclusions are the above-mentioned premises, e.g., to determine whether a destination is vulnera-
ble.

Associating Evidence and Belief Measure

Consider the file-transfer requirement in Table 1, and the scenario where the administrator needs
to determine if file transfer from the source locX.example.com should be allowed. By argument by
practical reasoning, we see that FTP is a means to file transfer, and conclude that to enable file
transfer via FTP, packets to port 20 should be allowed. Also, using a similar argument for SFTP,
we see that SFTP is a means to file transfer, and conclude that to enable file transfer via SFTP,
packets to port 22 should be allowed. Next, as described above, we apply the firewall scheme and
associate the evidence listed in Figure 1c to determine if packets with destinations of ports 20 and
22 should be allowed.

Considering the pieces of evidence and their belief measures in Figure 1c, we calculate the belief
measure of the conclusions of arguments A1 “Allow packets to port 20” and A2 “Allow packets to
port 22” as follows.

Argument A1: Allow packets to port 20

h1 : 〈0.70, 0.20, 0.10〉 e1

h2 :

(
¬h3
h2

)
∨
(
¬h4
h2

)
e3, e5, e7, e8

= 〈be7de3 , be7be3 , 1− be7de3 − be7be3〉
∨ 〈be8de5 , be8be5 , 1− be8de5 − be8be5〉

= 〈0.30, 0.34, 0.36〉

c :
h1 ∧ h2

c
e9

= 〈be9bh1bh2 , be9(dh1dh2 + dh1uh2 + uh1dh2), 1− bc − dc〉
= 〈0.1995, 0.1653, 0.6352〉

Argument A2: Allow packets to port 22

6

h1 : 〈0.90, 0.05, 0.05〉 e2

h2 :

(
¬h3
h2

)
∨
(
¬h4
h2

)
e4, e6, e7, e8

= 〈be7de4 , be7be4 , 1− be7de4 − be7be4〉
∨ 〈be8de6 , be8be6 , 1− be8de6 − be8be6〉

= 〈0.68, 0.04, 0.28〉

c :
h1 ∧ h2

c
e9

= 〈be9bh1bh2 , be9(dh1dh2 + dh1uh2 + uh1dh2), 1− bc − dc〉
= 〈0.5814, 0.171, 0.2476〉

Figure 1 shows the belief measure calculation for arguments A1 and A2 to determine if packets
being sent to ports 20 and 22 should be allowed. We observe that argument A1 yields a belief with
high uncertainty value whereas A2 yields high belief with reasonable uncertainty. Therefore, the
administrator can allow packets to port 22.

Empirical Evaluation

We empirically evaluated the comparative effectiveness of Aragorn and the traditional rule-based
approach (henceforth Trad). We considered following hypotheses.

H1. Aragorn yields policies of higher coverage than Trad yields.
Null hypothesis: Aragorn has no effect on the coverage of the policies.

H2. Aragorn yields policies of greater correctness than Trad yields.
Null hypothesis: Aragorn has no effect on the correctness of the policies.

H3. Modelers expend less time and effort in defining policies using Aragorn than those using Trad.
Null hypothesis: Aragorn has no effect on the time and effort expended.

We conducted a human-subject study to evaluate these hypotheses. Our study was approved
by North Carolina State University’s Institutional Review Board (IRB). We collected an informed
consent from each participant and provided a payment of 20 USD to each participant completing
the study.

Study Design

We selected 24 computer science (21 graduate, and three undergraduate) students. Each partic-
ipant had more than three years of programming and software development experience, and was
familiar with conceptual modeling, network security, and firewalls. Since network administration is
a technology task performed by network engineers, our participants are acceptable surrogates for

7

h1

Port P on H
required
〈0.70, 0.20, 0.10〉

h2
H patched for V
〈0.30, 0.34, 0.36〉

h3Vulnerability V

δ1 : ¬h3
h2

h4Malicious S

δ2 : ¬h4
h2

δ3 : h1∧h2
c

e3

No known
vulnerability
〈0.05, 0.70, 0.25〉

e5

Attacks from
locA.example.com
〈0.80, 0.05, 0.15〉

e1

Port 20 required
for file transfer
〈0.70, 0.20, 0.10〉 c

Allow packets to port 20 on H
from locA.example.com
〈0.1995, 0.1653, 0.6352〉

(a) Argument A1: Allow packets to port 20.

h1

Port P on H
required
〈0.90, 0.05, 0.05〉

h2
H patched for V
〈0.68, 0.04, 0.28〉

h3Vulnerability V

δ1 : ¬h3
h2

h4Malicious S

δ2 : ¬h4
h2

δ3 : h1∧h2
c

e4

No known vulnerability
to port 22
〈0.05, 0.80, 0.15〉

e6

No attack history
on port 22
〈0.05, 0.90, 0.05〉

e2

Port 22 required for
secured file transfer
〈0.90, 0.05, 0.05〉 c

Allow packets to port 22 on H
from locA.example.com
〈0.5814, 0.171, 0.2476〉

(b) Argument A2: Allow packets to port 22.

Evidence Premise Belief Measure Description Argument

e1 h1 〈0.70, 0.20, 0.10〉 Port 20 is required for file transfer via
FTP

A1

e2 h1 〈0.90, 0.05, 0.05〉 Port 22 is required for file transfer via
SFTP

A2

e3 h3 〈0.05, 0.70, 0.25〉 No known vulnerability to port 20 A1
e4 h3 〈0.05, 0.80, 0.15〉 No known vulnerability to port 22 A2
e5 h4 〈0.80, 0.05, 0.15〉 Attacks from locA.example.com, port 20 A1
e6 h4 〈0.05, 0.90, 0.05〉 No attack history on port 22 A2
e7 δ1 〈0.80, 0.05, 0.15〉 Decision-maker’s experience in the rule A1, A2
e8 δ2 〈0.80, 0.05, 0.15〉 Decision-maker’s experience in the rule A1, A2
e9 δ3 〈0.95, 0.02, 0.03〉 Decision-maker’s experience in the rule A1, A2

(c) Pieces of evidence corresponding to the file transfer requirement in Table 1.

Figure 1: Example arguments and pieces of evidence.

firewall administrators. Of the participants, 19 had academic or industry experience with network
security and firewalls and 16 had academic or industry experience with conceptual modeling.

Our study included three phases and applied the one-factor (approach) design with two alter-
natives (Trad and Aragorn).

Phase 1: Learn. Participants in each group learned the respective approach by specifying a fire-

8

wall policy for a hypothetical academic scenario. The academic scenario had eight require-
ments that participants took into account when specifying a firewall policy.

Phase 2: Design. Each participant specified a firewall policy for a hypothetical enterprise sce-
nario using the approach learned in Phase 1. The scenario had twelve requirements.

Phase 3: Maintain. We provided participants an incomplete solution to the scenario of Phase 2,
and asked them to modify that solution to accommodate five additional requirements.

We mitigated two main threats to our study. Specifically, to mitigate the threat of skill differ-
ences between participants, we surveyed participants’ about their educational backgrounds, their
prior experience with conceptual modeling and network security, and their familiarity with defining
and maintaining firewall policies. We balanced the groups based on the survey. To mitigate the
threat of participants failing to return surveys, we had them complete the difficulty survey after
each phase, while it was fresh in their minds, and record their completion time.

We split participants into two groups. The Trad group defined firewall packet filtering rules
based on the requirements and the evidence described in the scenario. The Aragorn group used
argumentation schemes and critical questions to create an argumentation network consisting mul-
tiple arguments (with premises and claims) and to associate evidence with arguments and assign a
strength value (a decimal value between 0 and 1) based on their intuition.

Metrics

We analyzed the artifacts produced to measure the following:

Coverage Ratio of the number of requirements satisfied to the total number of requirements in
the design and the maintenance phases. Higher is better.

Correctness Ratio of the number of requirements satisfied to the number of requirements at-
tempted. Higher is better.

Specification Quality Product of coverage and correctness. Higher is better.

Learnability Time in minutes to learn and design the solution. Lower is better.

Maintainability Time in minutes to make changes to an existing solution. Lower is better.

Difficulty in learning Rating by participant on a scale of 1–5 interpreted as very easy, easy,
neutral, difficult, and very difficult. Lower is better.

Difficulty in applying Rating by participant on a scale of 1–5 interpreted as very easy, easy,
neutral, difficult, and very difficult. Lower is better.

Effort Product of time in minutes to design the solution, and difficulty in applying. We define it
as a subjective measure to account for both the actual time spend and perceived difficulty to
complete the task. Lower is better.

Effort÷Coverage ratio Effort divided by coverage. We define it as a subjective measure to
compute effort required per unit coverage. Lower is better.

9

These statistical measures address both quality and process. For quality, we measure coverage
and correctness, which directly correlate with the human errors. For process, we measure time and
difficulty. Effort and Effort÷Coverage ratio are hybrids of quality and process.

Results and Discussion

We evaluate the proposed hypotheses (H1, H2, and H3) using the foregoing metrics, computed
from the solutions designed by each participant. We applied the common t-test for means and
Wilcoxon’s ranksum-test to compare the difference in the medians (x̃). Wilcoxon is stricter than
the t-test, and does not assume normality. Table 2 lists the computed values.

Table 2: Empirical results on the effectiveness of Aragorn compared to the traditional approach.
(Bold is better.)

Statistic Trad Aragorn p

Coverage (in %) Mean 35.76 74.54 < 0.01
Correctness (in %) Mean 39.99 82.93 < 0.01
Specification quality (in %) Mean 14.30 61.82 < 0.01
Learnability (in minutes) Mean 88.66 84 0.45
Maintainability (in minutes) Mean 20.08 29.5 0.03
Learning difficulty (1–5) Median 3 3 0.25
Applying difficulty (1–5) Median 3 4 0.16
Effort Mean 158.33 225.42 0.02
Effort÷coverage Mean 466.09 291.99 0.28

Coverage and Correctness We evaluate the coverage and correctness hypotheses (H1 and H2)
using the coverage, correctness, and quality measures. The mean coverage (74.54%) and
mean correctness (82.93%) for Aragorn was found to be significantly higher than the mean
coverage (35.76%) and mean correctness (39.99%) obtained for Trad. Also, the p values for
coverage and correctness are significant at the 5% level. The specification quality for Aragorn
specifications was significantly better than Trad: thus H1 and H2 hold.

Practical implications. These results suggest that Aragorn’s systematic approach (from re-
quirements to general arguments to packet-level arguments to policies) is beneficial. Fig-
ures 2a and 2b show the coverage and correctness boxplots based on the numbers of require-
ments satisfied in Phases 2 and 3.

Time and Effort We evaluate the time and effort hypothesis (H3) using the learnability, main-
tainability, difficulty and effort measures.

Learnability and Maintainability The average time to learn the approaches and design
the solution for the security settings in Phases 1 and 2 was lower for Aragorn (84 minutes)
than for Trad (88.6 minutes). However, the time taken to modify an existing solution
in Phase 3 was greater for Aragorn (29.5 minutes) than for Trad (20.08 minutes), thus
the null hypothesis is not rejected. The result was not surprising because participants
in the Aragorn group were required to meticulously answer each critical question in

10

0 0.2 0.4 0.6 0.8 1

Trad

Aragorn

µAragorn > µTrad, p < 0.01

(a) Coverage in Phases 2 and 3.

0 0.2 0.4 0.6 0.8 1

Trad

Aragorn

µAragorn > µTrad, p < 0.01

(b) Correctness in Phases 2 and 3.

0 20 40 60 80 100

Trad

Aragorn

% responses (x̃Trad < x̃Aragorn, p = 0.25)

(c) Difficulty in learning.

0 20 40 60 80 100

Trad

Aragorn

% responses (x̃Trad < x̃Aragorn, p = 0.16)

(d) Difficulty in applying.

0 100 200 300 400

Trad

Aragorn

µAragorn > µTrad, p = 0.02

(e) Effort: time taken × subjective difficulty.

100 700 1,300

Trad

Aragorn

µAragorn < µTrad, p = 0.28

(f) Effort÷coverage ratio for Phases 2 and 3.

Figure 2: Results.

the argumentation scheme as they made changes to the existing arguments. We can
potentially overcome this challenge through improved tool support.

Difficulty Median perceived difficulty to learn was found to be the same for the two groups.
Difficulty in applying was higher for Aragorn. This can be attributed to the participants
lacking prior experience of working with formal argumentation. Figures 2c and 2d show
plots for difficulty perceived by the participants. The p values indicate there is no
significant difference in difficulty.

Effort and Effort÷Coverage ratio Participants using Aragorn spent more effort on the
task. Figure 2e shows the boxplot for effort expended by the participants. However, as
Figure 2f shows, the effort÷coverage ratio was lower for Aragorn (291.99) than for Trad
(466.09). We do not include time and effort expended in Phase 1 when computing these
parameters. The p values indicate there is no significant difference in the associated
effort÷coverage measure.

Practical implications. Although participants using Aragorn spend more time in modifying
an existing solution, we find that Aragorn is not difficult to use, and the extra effort expended
when using Aragorn yield significant benefits in coverage.

11

Related Work

Relevant works combine argumentation and security requirements.
Walton et al. [12] provide a foundation for general argumentation schemes, which several frame-

works, models, and tools support [6,8,10]. But their effectiveness has not been adequately empiri-
cally evaluated.

Bentahar et al.’s [3] argumentation-driven approach enables web services to negotiate and per-
suade peers to join communities, and reason about their commitments.

Franqueira et al. [5] model security requirements and assess risks associated via arguments.
Similarly, Ionita et al. [7] analyze risk using an argumentation game. Their tabular representation
of arguments appears no more usable or scalable than the traditional firewall representation. These
works disregard uncertainty and incompleteness of information, and have not been empirically
evaluated.

Conclusions

Aragorn is novel in incorporating argumentation schemes and combining evidence and beliefs to
capture the design rationale in service policies.

Our empirical evaluation of Aragorn indicates that Aragorn performs significantly better than
the traditional approach. We find that the measures of coverage, correctness, and quality are
higher for participants using Aragorn. Aragorn performs on par with the traditional approach
on learnability, difficulty, and effort÷coverage. Much as we expected, participants expended more
time and effort when using Aragorn, though justified by aggregated improvements in quality. This
seeks to the need of better tooling to reduce the time and effort while maintaining the advantages
of Aragorn.

Aragorn addresses a general problem in specifying service security policies, namely, to re-
spect the requirements of the various stakeholders despite any conflicts among those requirements.
Aragorn provides a way to incorporate evidence where available and to ask critical questions to
help orient a search for additional evidence.

An important future direction is to automatically extract evidence supporting and opposing
policy arguments from a security policy corpus. Another direction is to adapt existing context-
aware requirements elicitation approaches to systematically define, maintain and reason about
contextual goals and plans.

Acknowledgments

We thank the US Department of Defense for support through the Science of Security Lablet at NC
State University. We also thank the anonymous referees for their helpful comments on the previous
versions of this paper.

Author Bios

Nirav Ajmeri is a PhD student in Computer Science at NC State University. His research in-
terests include software engineering and multiagent systems with a focus on security and

12

privacy. Ajmeri has a BE in Computer Engineering from Sardar Vallabhbhai Patel Institute
of Technology, Gujarat University. Contact him at najmeri@ncsu.edu.

Chung-Wei Hang is a software engineer at IBM. His research interests include natural language
processing, multiagent systems and probabilistic trust models. Hang received a PhD in
Computer Science from North Carolina State University, Raleigh. Contact him at chung-
wei.hang@gmail.com.

Simon D. Parsons is a Professor of Computer Science and the Vice Dean (Technology) for the
Faculty of Natural and Mathematical Science at King’s College London. His research inter-
ests are in the general area of autonomous systems that includes trust between agents, and
argumentation. He is a current Co-Editor-in-Chief of the Knowledge Engineering Review.
Contact him at simon.parsons@kcl.ac.uk.

Munindar P. Singh is a Professor in Computer Science and a co-director of the Science of Se-
curity Lablet at NC State University. His research interests include the engineering and
governance of sociotechnical systems. Singh is an IEEE Fellow, a AAAI fellow, a former
Editor-in-Chief of IEEE Internet Computing, and the current Editor-in-Chief of ACM Trans-
actions on Internet Technology. Contact him at singh@ncsu.edu.

References

[1] Ehab Al-Shaer and Hazem Hamed. Discovery of policy anomalies in distributed firewalls. Proc.
Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM),
pages 2605–2616, 2004. IEEE Computer Society.

[2] Andy Applebaum, Karl Levitt, Jeff Rowe, and Simon Parsons. Arguing about firewall policy.
Proc. International Conference on Computational Models of Argument, pages 91–102, 2012.

[3] Jamal Bentahar, Zakaria Maamar, Wei Wan, Djamal Benslimane, Philippe Thiran, and Sat-
tanathan Subramanian. Agent-based communities of web services: An argumentation-driven
approach. Service Oriented Computing and Applications, 2(4):219–238, 2008.

[4] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT Press, 2008.

[5] Virginia N.L. Franqueira, Thein Than Tun, Yijun Yu, Roel Wieringa, and Bashar Nuseibeh.
Risk and argument: A risk-based argumentation method for practical security. Proc. IEEE
International Requirements Engineering Conference, pages 239–248, 2011.

[6] Thomas Gordon, Henry Prakken, and Douglas Walton. The Carneades model of argument
and burden of proof. Artificial Intelligence, 171(10–15):875–896, 2007.

[7] Dan Ionita, Jan-Willem Bullee, and Roel Wieringa. Argumentation-based security require-
ments elicitation. Proc. IEEE Workshop on Evolving Security and Privacy Requirements En-
gineering, pages 7–12, 2014.

[8] Jordan Salvit, Zimi Li, Senni Perumal, Holly Wall, Jennifer Mangels, Simon Parsons, and Eliz-
abeth Sklar. Employing argumentation to support human decision making. Proc. International
Workshop on Argumentation in Multi-Agent Systems, 2014.

13

[9] Thomas Shinder. Security considerations for platform as a service
(PaaS). http://social.technet.microsoft.com/wiki/contents/articles/3809.
security-considerations-for-platform-as-a-service-paas.aspx, November 2013.

[10] Mark Snaith and Chris Reed. TOAST: Online ASPIC+ implementation. Proc. International
Conference on Computational Models of Argument, pages 509–510, 2012.

[11] Yuqing Tang, Chung-Wei Hang, Simon Parsons, and Munindar Singh. Towards argumentation
with symbolic Dempster-Shafer evidence. Proc. International Conference on Computational
Models of Argument, pages 462–469, 2012.

[12] Douglas Walton, Chris Reed, and Fabrizio Macagno. Argumentation Schemes. Cambridge
University Press, 2008.

[13] Yonghong Wang, Chung-Wei Hang, and Munindar Singh. A probabilistic approach for main-
taining trust based on evidence. Journal of Artificial Intelligence Research, 40:221–267, 2011.

[14] Avishai Wool. Trends in firewall configuration errors: Measuring the holes in Swiss cheese.
IEEE Internet Computing, 14(4):58–65, 2010.

14

