
App Review Analysis via Active Learning
Reducing Supervision Effort without Compromising Classification Accuracy

Venkatesh T. Dhinakaran†, Raseshwari Pulle†, Nirav Ajmeri‡, Pradeep K. Murukannaiah†
†Department of Software Engineering, Rochester Institute of Technology

Rochester, NY 14623, USA
‡Department of Computer Science, North Carolina State University

Raleigh, NC 27695, USA
vt7300@rit.edu, rp3737@rit.edu, najmeri@ncsu.edu, pkmvse@rit.edu

Abstract—Automated app review analysis is an important
avenue for extracting a variety of requirements-related infor-
mation. Typically, a first step toward performing such analysis is
preparing a training dataset, where developers (experts) identify
a set of reviews and, manually, annotate them according to a given
task. Having sufficiently large training data is important for both
achieving a high prediction accuracy and avoiding overfitting.
Given millions of reviews, preparing a training set is laborious.

We propose to incorporate active learning, a machine learning
paradigm, in order to reduce the human effort involved in app
review analysis. Our app review classification framework exploits
three active learning strategies based on uncertainty sampling.
We apply these strategies to an existing dataset of 4,400 app
reviews for classifying app reviews as features, bugs, rating, and
user experience. We find that active learning, compared to a
training dataset chosen randomly, yields a significantly higher
prediction accuracy under multiple scenarios.

Keywords-App review analysis; active learning; mobile apps;
Crowd RE; social requirements;

I. INTRODUCTION

Smart devices including smartphones, tablets, and a variety
of wearables are ubiquitous; so is developing software appli-
cations or apps for these smart devices. According to the latest
estimates, there are over 2.5 billion smartphone users, and over
12 million app developers who develop apps for these devices
[9]. These developers have made available over five million
smart device apps on digital distribution stores such as Google
Play, Apple App Store and Amazon Appstore, garnering over
200 billion application downloads [39].

The app users describe their interaction and experience with
an app as app reviews on application distribution stores. App
reviews are a rich source of information for app developers.
Specifically, app reviews contain a wealth of information
related to requirements, e.g., bug reports [24], change requests
[8], privacy requirements [40], nonfunctional requirements [1],
[21], and even the features within an app that users like [11]
and the rationales for their likes and dislikes [20]. It is crucial
for developers to recognize and act on such information in a
timely manner [28]. Otherwise, given the amount of choices,
users could simply move to an alternative app [43].

According to a recent empirical study [33], apps on digital
distribution platforms receive on an average 22 reviews every
day and, depending on an app’s popularity, this number could
go as high as a few thousands per day. Of these reviews, only

about a third are helpful to the analysts and developers [6].
With the sheer amount of the review data that is being gener-
ated every day, it is extremely labor-intensive for developers
to manually vet all reviews to identify the ones that are useful
for their purposes. Accordingly, it is not surprising that app
developers, typically, do not respond to app reviews although
responding may have positive effects such as users increasing
ratings as a result of a developer response [27].

The need for automated approaches to app review analysis
has been well recognized in the literature. Broadly, there are
two categories of automated app review analysis techniques:
(1) supervised approaches such as classification, e.g., [4], [8],
[24]; and (2) unsupervised approaches such as clustering and
topic modeling, e.g., [6], [14]. A key difference between these
two types of approaches is that supervised approaches need
“labelled” data instances for training whereas unsupervised
approaches can be trained with unlabelled data instances.

Labeling data requires human effort (or supervision). Hence,
one may argue in favor of using an unsupervised technique,
such as the one proposed by Villarroel et al. [43], instead
of using a supervised approach such as the one proposed by
Maalej et al. [24]. However, unsupervised techniques are not
effective when the number of classes are unknown [32] and
may need a very large dataset to be effective. Further, unsu-
pervised approaches may perform well for simple tasks such
as categorizing reviews as informative versus not informative
reviews [6], but may fail to make finer distinctions such as
feature versus bug, or privacy versus security requirements.
In contrast, a classifier (supervised) learns from user-provided
labels and predicts classes for unlabeled instances. However,
to obtain a satisfactory accuracy, it may still require a large
number of labels, incurring significant human effort.

The review labelling task, typically performed by developers
or subject-matter experts (SMEs), is extremely labor-intensive
considering the amount of noise in reviews, the informal
language often used, and the ambiguities inherent to natural
language. Further, it is necessary to obtain labels from multiple
developers for each review to create a reliable training dataset.
Requiring significant manual effort, especially from experts,
weakens the argument for automated app review analysis.

CrowdRE [10] is a promising avenue for engaging the
crowd (general public) in human-intensive RE tasks such as
classifying reviews and extracting requirements [3]. CrowdRE

could substantially reduce labeling workload on developers,
but it may not be effective for all review labeling tasks.
For example, the crowd’s lack of domain knowledge limits
their ability to distinguish bug reports from feature requests;
such miscategorization severely impacts the accuracy of the
resulting models [15]. Further, it would be desirable to engage
the crowd (and human intelligence, in general), for creative
[30] as opposed to mundane tasks such as labeling.

Contributions: We seek to effectively utilize the available
human resources in the process of automated app review
analysis. This is an important challenge considering that app
review analysis may incur significant time, effort, and money.
To this end, we summarize our contribution as follows.
Goal: Reducing the human effort required for app review

analysis without compromising the accuracy of analysis.
Method: We propose to exploit active learning, a well-known

machine learning paradigm [37], [38], for app review clas-
sification. We describe a generic active learning framework
(pipeline) that seeks to minimize human effort required for
training a review classifier by intelligently selecting unla-
belled reviews for labelling via uncertainty sampling.

Evaluation: We conduct extensive experiments on an existing
dataset [24] consisting of 4,400 labelled reviews (consisting
of four classes), comparing active learning and baseline clas-
sifiers, considering (1) both binary and multiclass problems;
(2) three uncertainty sampling strategies; (3) different training
set sizes and classification techniques.
Organization: Section II details our active learning ap-

proach to classify app reviews. Section III describes our
experiments. Section IV discusses results. Section V describes
the related works and Section VI concludes the paper.

II. METHOD

In this section, we motivate the need for active learning for
app review analysis via an example scenario, demonstrating
(intuitively) that choosing the right training set can potentially
enhance the review classification accuracy. Then, we describe
the three active learning strategies our approach explores.

A. Motivating Example

Consider a cloud storage app, CLOUDDRIVE which helps
users store and share files on the cloud (similar to Dropbox and
Google Drive). Suppose that the developers of the app want
to analyze its reviews to identify the features requested by
the app’s users. Since CLOUDDRIVE has more than a million
reviews, the developers would like to employ an automated
classifier to identify reviews corresponding to feature requests.

The first step toward realizing an app review classifier is to
build a training set consisting reviews labelled as a feature re-
quest (3) or as a non-feature request (7). The CLOUDDRIVE’s
developers intend to crowdsource these labels. However, being
a startup, CLOUDDRIVE has a limited budget for acquiring the
labels. To simplify the example, imagine that CLOUDDRIVE’s
target is to acquire labels for five reviews (in practice, one
would acquire labels for a larger number of reviews).

TABLE I
SAMPLE REVIEWS OF THE CLOUDDRIVE APP. THE SHADED REVIEWS ARE
LABELLED AS FEATURE REQUEST OR NOT, AND THE UNSHADED REVIEWS

ARE UNLABELLED

ID Review Feature

r1 Very convenient app where I can store all of my
photos+ videos with easy access

7

r2 Plz add scan with jpg format 3
r3 The app is ok but their plans are too expensive 7
r4 Please introduce something like Dropbox lite! 55Mb

app size is way too much!
3

r5 It does not support multi-selection that I need to
download one by one on web version

?

r6 Please add dark themes ?
r7 No support for OCR on PDFs? I’m looking to move... ?
r8 Introducing an option to automatically save photos

from Micro SD card will be great!
?

.

As shown in Table I, suppose that the developers have
somehow acquired labels for four reviews (r1–r4) so far. The
question, then, is which review to acquire the fifth label for.
Suppose that there are four candidates (r5–r8) to choose the
fifth review from (in practice, the number of candidates is
much larger—every unlabelled review is a potential candidate).

A simple approach is to choose the next review to label
randomly from the candidate pool. Suppose that the randomly
chosen review is r6. Next, the developers train a review classi-
fier on the training set (consisting of five labelled reviews) and
predict whether each of the remaining three reviews (r5, r7,
and r8) is a feature request or not. Assume that each of these
remaining three reviews is a feature request (ground truth).
Further, given this training set, consider that the classifier
somehow learns that reviews consisting of tokens “add” and
“introduce” are feature requests and others are not. Then, the
classifier would predict r8 as a feature request, and r5 and r7
as not, yielding a very low (33%) prediction accuracy.

Instead of choosing r6 as the fifth training instance, what
if we somehow chose r5? From this training set, the classifier
may have learned that the tokens “add,” “introduce,” and “not
support” are indicative of a review being a feature request. This
classifier would, then, predict each of the remaining reviews
(r6–r8) as a feature request, yielding 100% accuracy.

Thus, a key question is: how do we decide to choose r5
instead of r6 before acquiring the label (and training the
classifier with five instances)? The problem with adding r6 as
the fifth training instance is that it provides no new information
to the classifier in the training process. That is, the classifier
can learn from the original four training instances that the
token “add” indicates that a review is potentially a feature
request; and, including r6 (which, too, consists of “add”),
does not provide any new information. In contrast, including
r5 provides an opportunity for the classifier to learn that the
token “not support” may also be indicative of a review being
a feature request. Active learning (Section II-C) exploits this
intuition to choose the right training set.

Note that the scenario above is a simplifying example.
In practice, (1) one may acquire labels for hundreds, if not

2

thousands, of reviews; (2) the number of potential candidates
to choose the next review to label from may be tens of
thousands; (3) there may be more than two classes (feature,
bug, and rating); and (4) a classifier’s decision boundary may
be much more complex than deciding whether an instance
belong to a class based on certain keywords. Yet, the idea that
a classifier can learn better from some training sets than others
also applies to more complex scenario as we describe next.

B. An Active Review Classification Framework

Figure 1 shows an overview of our active (learning) review
classification framework. In a nutshell, the framework takes
a large pool of unlabelled app reviews as input and outputs
categorized reviews. In this process, the framework employs:
An active learner that (iteratively) chooses unlabelled re-

views for labelling;
A set of review oracles (human labellers), who assign each

review selected by the active learner to one (or more,
depending on the classifier) predefined categories; and

A review classifier that, given a set of labelled reviews, auto-
matically learns a model capable to predicting the categories
(labels) for new (unlabelled) reviews.

Review Classifier Classified ReviewsApp Store

Active Learner
(Iterative)

Bug

Feature Request

Praise

Rating

A Pool of
Unlabelled Reviews

A Set of
Labelled Reviews

Review Oracle
(e.g., Crowd Labeler)

Requirements Engineers,
Developers, Testers, etc.

Assign the most
uncertain reviews
for manual labelling

Fig. 1. An active learning pipeline for classifying app reviews

Other works have explored techniques for classifying re-
views and for exploiting review oracles (described in Sec-
tion V). The crux of our work is the active learner.

Figure 2 shows the steps involved in active learning a review
classifier from a large pool of unlabelled reviews. We employ
one of the most common active learning frameworks known
as uncertainty sampling [38]. The process of active learning
via uncertainty sampling involves the following steps.
Initialization: Randomly sample a small set of unlabelled

reviews and acquire labels for those from the review oracles.
Note that the initial sample needs to be large enough such
that it is possible to train a classifier from it (how good that
classifier is does not matter at this stage).

Training: Train a classifier from the training set of labelled
reviews. Any classifier can be used in this stage. However,
it is required to ascertain an uncertainty score for each
prediction the classifier makes. Most probabilistic classifiers
(such as naive Bayes and logistic regression) meet this
requirement, where the probability of an instance belonging
to a class is indicative of the uncertainty (e.g., for a binary

classification problem, the closer the probability of a predic-
tion is to 0.5, the higher the uncertainty of the classifier’s
prediction). Similarly, for margin-based classifiers such as
Support Vector Machines (SVMs), the uncertainty can be
measured as a function of the distance of an instance from
the decision boundary (the separating hyperplane for SVM)
[42]—the closer an instance is to the boundary, the higher
the corresponding uncertainty.

Prediction: For each remaining unlabelled review, predict the
class label and ascertain the uncertainty of prediction.

Choose the most uncertain predictions: Order the reviews
by their respective uncertainty of prediction, and choose the
reviews corresponding to the k most uncertain predictions.
The choice of k is a tradeoff between classification accuracy
and training efficiency—ideally, k should be low, but choos-
ing a very low value (e.g., k = 1) slows the training process
without considerably enhancing the classification accuracy.

Repeat: The reviews chosen in the step above are the ones for
which the classifier is most unsure of the labels. In essence,
acquiring labels for these reviews can potentially be most
informative to the classifier. Thus, we acquire the labels for
these reviews from the review oracles, add these labelled
reviews to the training set in the second step above, and
repeat the process. The process stops when (1) the desired
classification accuracy is reached, (2) the labelling budget is
exhausted, or (3) there are no more unlabelled reviews.

A large pool of
unlabelled reviews

Acquire labels for the selected
reviews from the oracles

Randomly select a (small)
sample of unlabelled reviews

Train a Classifier with the
labelled reviews

Predict the class for each remaining
unlabelled review from the classifier

Desired accuracy achieved,
labelling budget exhausted, or
no more unlabelled reviews?

Choose reviews corresponding
to most uncertain predictionsStop

Yes No

Fig. 2. A flowchart depicting the steps employed by the active learner

C. Uncertainty Sampling Strategies

A key step in the active learning process above is ascertain-
ing the uncertainty of predictions. We experiment (Section III)
with well-known strategies [37], [38] for doing so. We briefly
describe these strategies below to be self contained.

3

As shown in Figure 2, each iteration of the active learning
process starts with a training set T of labelled reviews, and
a set R of unlabelled reviews. Let C be the set of all labels
(classes). Suppose that we train a probabilistic classifier from
T and let Θ be the parameters of the classifier. Then, for an
r ∈ R and a c ∈ C, Pθ(c|r) indicates the probability that r
belongs to class c as predicted by the classifier. Our objective
is to choose one unlabelled review (let k = 1), r∗ ∈ R, to
add to the training set in the next iteration of the process. We
describe three uncertainty sampling strategies for selecting r∗.

a) Least Confident Prediction (LC): Perhaps, the sim-
plest strategy to choose the most uncertain review is to choose
the review for which the classifier is the least confident
about predicting a class [7]. A probabilistic classifier, typi-
cally, predicts the class of an unlabelled instance to be the
class corresponding to the highest predicted probability. Let
ĉ = argmaxc∈C Pθ(c|r) be the predicted class. Then, we can
choose r∗LC as follows:

r∗LC = argmax
r∈R

[
1− Pθ(ĉ|r)

]
For example, considering that C = {c1, c2, c3}, R =

{r1, r2, r3}, and the prediction probabilities as shown in
Table II, the LC strategy chooses r∗LC = r1.

b) Smallest Margin (M): Although potentially effective,
a problem with the LC strategy is that it only considers
probability of one class (that corresponding to the highest
predicted probability). However, just the highest probability
may not be indicative of the uncertainty of the prediction. An
alternative strategy is to employ margin—the difference of the
two highest probabilities—in the computation of uncertainty
[36]. Let ĉa and ĉb be the classes corresponding to two highest
predicted probabilities, respectively. Then, we can choose:

r∗M = argmin
r∈R

[
Pθ(ĉa|r)− Pθ(ĉb|r)

]
,

For example, as Table II shows, although LC chooses r1,
M chooses r2 since the margin for r2 is smallest of the three.

c) Highest Entropy (H): The last strategy we consider
is based on the classic notion of entropy. Although the margin
strategy considers top two probabilities, it does not consider
the entire distribution of probabilities across the classes. This
is particularly important for multiclass classification problems
where the number of classes is greater than three. The entropy-
based strategy computes the entropy over class prediction
probabilities for each unlabelled instance and chooses the
instance with the highest entropy. That is:

r∗H = argmax
r∈R

[
−

∑
c∈C

Pθ(c|r) logPθ(c|r)
]

For example, in Table II, the entropy-based strategy (H)
chooses r3 over r1 and r2.

As shown in Table II, for the same set of predictions, each
of three strategies may choose a different review instance for
labelling next. However, it is important to note that the three
strategies are equivalent for a binary classification problem.

TABLE II
EXAMPLES DEMONSTRATING THE CHOICE OF r∗ FOR EACH OF THE THREE

UNCERTAINTY SAMPLING STRATEGIES

r Pθ(c1|r) Pθ(c2|r) Pθ(c3|r) 1− LC M H r∗

r1 0.3 0.2 0.5 0.5 0.2 0.447 r∗LC

r2 0.05 0.55 0.4 0.45 0.15 0.37 r∗M

r3 0.24 0.25 0.51 0.49 0.26 0.448 r∗H

That is, in a binary classification problem, each of three
strategies chooses the same review instance for labelling next.

III. EXPERIMENTS

Evaluating our active learning pipeline is challenging, con-
sidering that there are multiple sources of variation, including:
(1) the type of classification task (binary versus multiclass),
(2) the size of the training set, (3) the classification technique,
and (4) the active learning strategy. We systematically vary
these parameters, and, for each case, evaluate the benefits of
incorporating active learning for app review classification.

A. Dataset

For our evaluation, we require a dataset that (1) consists of
labelled reviews (to serve as training set as well as ground
truth for evaluation), (2) consists of more than two labels (to
experiment with multiclass active learning and the correspond-
ing strategies), and (3) is sufficiently large (so that we can
experiment with training sets of varying sizes). Accordingly,
we employ the dataset provided by Maalej et al. [24], [25].
Table III summarizes this dataset, showing the classes in it,
the class distribution, and an example review for each class.

TABLE III
THE CLASS DISTRIBUTION AND EXAMPLE REVIEWS FROM THE APP

REVIEW DATASET WE EMPLOY

Class Size Example review

Feature
request

299 This app is awesome and makes recording everything
so easy, the only thing I can request is to make it
compatible with iPads!

Bug
report

378 I liked very much the upgrade to pdfs (divisions and
search) However, they aren’t displaying anymore. Fix
it and it will be perfect.

User
experience

737 This is a great little app; especially for those with
hectic schedules, it keeps you in like for visual people
like me.

Rating 2,721 Very nice app.

B. Experimental Setup

1) Binary and Multiclass: We train four binary classifiers
(feature request, bug, user experience, and rating) and a
multiclass classifier. We create a dataset for each type of
classifier. For each binary classifier, we choose reviews from
the corresponding class as positive set and a sample of reviews
from the remaining three classes as negative set. For the
multiclass classifier, we select reviews from all four classes.

4

2) Incremental Training: Given a classifier’s dataset, we
divide it into three sets as shown in Figure 3. We chose the
sizes of initial training (20%) and final test (30%) sets, based
on experimentation, such that there were sufficient reviews
from each class for initial training and final test, respectively.

Initial
Training Data Final Test Data

Experimental Data (ED)
20% 70%

50%0% 100%

Training Set @50% ED Test Set @50% ED

Training Test

Fig. 3. Experimental setup for incremental training

We employ an incremental training setup common for
evaluating active learning. That is, each of our experiments
involves multiple training and testing iterations. In the first
iteration, the training set consists of initial training data and
the test set consists of the experimental data (ED) and the final
test data. In the subsequent iterations, we select instances from
the experimental data, add them to the training set and remove
them from the test set. We stop this process when the size of
the test set reaches the size of the final test data.

3) Features: We use the bag-of-words approach to identify
the features from the reviews in the training set. After re-
moving stop words and lemmatizing the tokens, we consider
each remaining token (unigram) as a feature. Note that we
did not perform feature selection since our objective is to
measure the effectiveness of active learning. Feature selection
is an additional step in the pipeline which can influence the
effectiveness of both active and baseline learning methods.

4) Classifiers: We experiment with three classification
algorithms—naive Bayes, logistic regression, and SVM. We
employ the Scikit-learn [35] implementation of each. For
most experiments (unless noted otherwise), we found similar
patterns of results for each classifier; thus, we only report
results for the naive Bayes classifier.

5) Baseline and Active Learning: We train two binary
classification variants: baseline (BL) and active learning (AL).
For multiclass, we train a baseline (BL) variant, and a variant
for each active learning strategy (ALLC , ALM , and ALH).

The experimental setup is identical for each variant. Each
variant employs the same initial training set. However, in
the subsequent iterations, their training (and test) sets differ.
Whereas the baseline strategy randomly increments the train-
ing set, the active learning variants increment the training set
according to their uncertainty sampling strategy.

C. Metrics

We evaluate classification performance via the standard
metrics of precision, recall, and F1 scores. For multiclass, we
compute per-class and aggregate measures (macro-precision,
macro-recall, and macro-F1 scores measure the mean values
of per-class precision, recall, and F1 scores, respectively).

Precision and recall may not be equally important for
all usecases. For instance, in the usecase of automatically
assigning bugs from app reviews to developers, it may be
more important to precisely classify whether or not a review
is a bug report. On the other hand, if the usecase is to find
creative feature requests from app reviews, a high recall may
be preferable since we want to go through as many feature
requests as possible to identify the creative ones.

Our work explores app review analysis as a generic tech-
nique, not for a specific purpose. Accordingly, we report F1

scores (weighing precision and recall equally). Depending on
the goal of app review analysis, one may weigh precision and
recall differently. In such cases, a weighted version of F score,
Fβ , can be used to evaluate the classifier [2].

D. Statistical Tests

Our experimental setup has two sources of randomness.
First, the initial training set is randomly selected. Second, for
the baseline classifier, the training set is selected randomly at
each iteration. Thus, the results of our experiment can vary
from one run to another. To make sure that the differences
in results we observe are not purely by chance, we run our
experiment 30 times and compare the samples via Wilcoxon’s
ranksum test, which is non-parametric and does not make any
assumptions about the underlying distributions [16].

IV. RESULTS AND DISCUSSION

A. Binary Classification

Figure 4 compares the evaluation metrics for the baseline
and the active learning classifiers for the binary classification
task. Since we repeated our experiments 30 times, we show the
mean values measured from the 30 runs of the experiments in
this and other similar plots. Figure 5 compares the distribution
of precision, recall, and F1 scores for baseline and active
learning classifiers when the training size is maximum, i.e.,
initial training data plus 100% experimental data (ED).

We make several key observations from Figures 4 and 5.
1) F1 Scores: As evident from Figure 4 (third row), the

F1 scores for active learning are consistently higher than
those for the baselines across training set sizes and for each
binary classifier. Further, as Figure 5 (third column) shows, the
differences between the baseline and active learning classifiers
are statistically significant. Accordingly, we conclude that:
A binary app review classifier trained on an actively learned
training set yields a higher F1 score than a baseline classifier
trained from passively (randomly) chosen training set.

2) Precision: From Figures 4 and 5, we observe that, the
precision values for active learning are significantly better for
Bug Report, Feature Request, and User Experience classifiers.
However, the difference is not significant for the Rating
classifier. We attribute this result to the way in which active
learning picks training instances in our setting. That is, as
active learning picks new training instances in each iteration,
the resulting positive and negative classes in the training set
becomes increasingly more representative of the positive and

5

0 20 40 60 80 100
0.4
0.6
0.8

1

Pr
ec

is
io

n
Bug Report

0 20 40 60 80 100
0.4
0.6
0.8

1

Feature Request

0 20 40 60 80 100
0.4
0.6
0.8

1

User Experience

0 20 40 60 80 100
0.4
0.6
0.8

1

Rating

0 20 40 60 80 100
0.4
0.6
0.8

1

R
ec

al
l

0 20 40 60 80 100
0.4
0.6
0.8

1

0 20 40 60 80 100
0.4
0.6
0.8

1

0 20 40 60 80 100
0.4
0.6
0.8

1

0 20 40 60 80 100
0.4
0.6
0.8

1

Training set size (%ED)

F 1
sc

or
e

0 20 40 60 80 100
0.4
0.6
0.8

1

Training set size (%ED)
0 20 40 60 80 100

0.4
0.6
0.8

1

Training set size (%ED)
0 20 40 60 80 100

0.4
0.6
0.8

1

Training set size (%ED)

Baseline Classifier Active learning Classifier

Fig. 4. Comparing the active learning and baseline classifiers in the binary classification task

0.4 0.6 0.8 1

BL

AL

B
ug

R
ep

or
t

0.4 0.6 0.8 1 0.4 0.6 0.8 1

0.4 0.6 0.8 1

BL

AL

Fe
at

ur
e

R
eq

ue
st

0.4 0.6 0.8 1 0.4 0.6 0.8 1

0.4 0.6 0.8 1

BL

AL

U
se

r
E

xp
er

ie
nc

e

0.4 0.6 0.8 1 0.4 0.6 0.8 1

0.4 0.6 0.8 1

BL

AL

Precision @100% ED

R
at

in
g

0.4 0.6 0.8 1

Recall @100% ED
0.4 0.6 0.8 1

F1 score @100% ED

Fig. 5. Comparing the Precision, Recall, and F1 scores for baseline (BL) and active learning (AL) classifiers for maximum training set (100% ED)

negative instances in the overall dataset, respectively. As a
result, when tested, the classifier yields fewer false positives,
and thus, higher precision, in each successive iteration.

In contrast, we cannot claim the same pattern for the base-
line classifier. Since the baseline classifier adds new training
instances randomly, the distributions of reviews in the classes
may not be representative of the of entire dataset even when
we increase the training set, explaining our observation that
precision curves are almost flat for the baseline classifiers.

For the Rating classifier, we note that the Rating class is
much larger than other classes (Table III). Further, the class

is also “noisy” or less-structured in that there are a variety of
ways to merely express a rating. In such cases, we conjecture
that active learning, similar to baseline, is unable to pick
representative reviews for the training set.

A binary AL classifier yields a higher precision than a BL
classifier when the classes are sufficiently well structured.
For app review analysis, the Bug Report, Feature Request,
and User Experience classes are sufficiently well structured.

3) Recall: For all but Rating classifier, the recall values
for both baseline and active learning are high, in general.

6

Further, in all cases, the recall for active learning increases as
the training set size increases. Although the recall for active
learning is slightly lower than the baseline initially, it picks
up and outperforms baseline for larger training sets.

We attribute this observation to the distribution of reviews
between positive and negative classes in the dataset. Specifi-
cally, in these binary classification tasks, the positive classes
contain similar reviews whereas the negative classes are a lot
more diverse. For example, for the Bug Report classifier, the
positive class contains reviews about Bug Reports whereas the
negative class contains all other types of reviews. As a result,
the classifiers (AL or BL) tend to classify more reviews as
positive class, in essence, yielding high recall values. Further,
as active learning makes the positive class in the training set
more representative of the same in the test set, it is able to
increase the recall, but the baseline fails to do so.
A binary AL classifier yields a higher recall than a BL
classifier when the training set is sufficiently large.

To further demonstrate the value of active learning, Table IV
shows the evaluation metrics for the baseline classifier when
the training set size is maximum (100% ED), and the training
set size active learning requires to consistently outperform
baseline on each of the evaluation metrics.

TABLE IV
TRAINING SET SIZE (IN %ED) THE ACTIVE LEARNING CLASSIFIER TAKES

TO CONSISTENTLY OUTPERFORM THE BASELINE CLASSIFIER TRAINED
WITH MAXIMUM (100% ED) TRAINING SET

Class Precision AL Recall AL F1
AL

(%ED) (%ED) (%ED)

Bug Report 0.67 14 0.92 68 0.77 18
Feature Request 0.72 12 0.90 56 0.80 25
User Experience 0.67 9 0.86 54 0.75 14
Rating 0.51 68 0.50 5 0.50 5

In all binary app review classification tasks, active learning
outperforms the baseline on all evaluation metrics with only
a fraction of the training dataset the baseline employs.

B. Multiclass Classification

Figure 6 shows the per-class and macro-averaged evaluation
metrics for the multiclass classifiers. It compares the metrics
for baseline classifier and the classifier for each active learning
strategy. Figure 7 compares the distribution of the macro
metrics when the training set is maximum (100% ED).

1) Macro-Averaged Metrics: As evident from Figure 6, the
classifiers trained via active learning strategies outperform the
baseline classifier, on each macro-averaged evaluation metric,
consistently across different training set sizes, demonstrating
that active learning is valuable for multiclass classification.
An actively trained multiclass app reviewer classifier yields
a better overall (macro) precision, recall, and F1 score than
a passively trained multiclass app reviewer classifier.

The multiclass classifiers (baseline or active learned) yield
a lower accuracy compared to their binary counterparts. This

is not surprising—going from two to four classes, learning the
class (decision) boundaries is much more complex.

2) Per-Class Metrics: We observe from Figure 6 that the
per-class metrics for active learning strategies are better than
those for baseline in all cases with two main exceptions.
First, for the Rating class, the precision values of the active
learning strategies and baseline are almost same. Second, for
Feature Request class, the recall values for the active learning
strategies seem to be slightly worse than the baseline.

We borrow intuitions from the binary classification results
to explain these exceptions. First, as we mentioned, the Rating
class is larger and less-structured compared to the other
classes. Thus, both baseline and active learning fail to choose
a training set representative of the corresponding class in the
overall dataset. Second, we note that Feature Request is the
minority class among the four classes (Table III). As we
observed in the binary case, the recall was lower for active
learning when the training set size was small. We conjecture
that the recall for the Feature Request class in the multiclass
case is lower for a similar reason, and that it will go up when
more training instances are added to that class.

An actively trained multiclass app reviewer classifier yields
a better per-class precision, recall, and F1 score than a
passively trained multiclass app reviewer classifier when the
corresponding class is sufficiently large and well structured.

C. Uncertainty Sampling Strategies

Based on the comparisons in Figures 6 and 7, we note that,
there were no significant differences in the performances of the
three uncertainty sampling strategies we employed. However,
this result was specific to the naive Bayes classifier.

Table V shows a snapshot of our results for additional clas-
sifiers. For the logistic regression and support vector machines
(SVM) classifiers, we observe that AL strategies based on least
confident prediction (ALLC) and margin (ALM) outperform
the strategy based on entropy (ALH). However, these results
were not consistent across all settings we tried.

For the active multiclass classification, there was no clear
winner among the the uncertainty sampling techniques across
(macro and per-class) metrics, classification techniques, and
training set sizes. However, for logistic regression and SVM,
ALLC and ALM outperform ALH on macro metrics.

Our finding above is similar to Settles and Craven’s finding
[38] that there was no clear winner among different active
learning strategies (they compare active learning strategies for
different sequence labelling tasks on multiple corpora).

D. Summary

We highlighted our main findings above. Overall, they
suggest that active learning classifiers outperform baseline
classifiers under several app review classification settings.
However, smaller training set sizes and the extent of noise
in the classes may degrade the active learning performance.

7

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Pr
ec

is
io

n
Bug Report

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Feature Request

0 20 40 60 80 100

0.2

0.4

0.6

0.8

User Experience

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Rating

0 20 40 60 80 100

0.2

0.4

0.6

0.8

R
ec

al
l

0 20 40 60 80 100

0.2

0.4

0.6

0.8

0 20 40 60 80 100

0.2

0.4

0.6

0.8

0 20 40 60 80 100

0.2

0.4

0.6

0.8

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Training set size (%ED)

F 1
sc

or
e

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Training set size (%ED)
0 20 40 60 80 100

0.2

0.4

0.6

0.8

Training set size (%ED)
0 20 40 60 80 100

0.2

0.4

0.6

0.8

Training set size (%ED)

Baseline Active learning (Least confident) Active learning (Margin) Active learning (Entropy)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Training set size (%ED)

M
ac

ro
Pr

ec
is

io
n

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Training set size (%ED)

M
ac

ro
R

ec
al

l

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Training set size (%ED)

M
ac

ro
F 1

sc
or

e

Fig. 6. Comparing per-class (above legend) and macro-averaged (below legend) metrics for baseline and active learning (three strategies) multiclass classifiers

TABLE V
THE MACRO-AVERAGED METRICS FOR DIFFERENT MULTICLASS CLASSIFIERS TRAINED AT 100% ED SIZE

Classifier BL ALLC ALM ALH

P R F1 P R F1 P R F1 P R F1

Naive Bayes 0.55 0.54 0.52 0.66 0.59 0.60 0.65 0.59 0.59 0.64 0.58 0.59
Logistic Regression 0.58 0.58 0.57 0.69 0.68 0.69 0.69 0.68 0.68 0.66 0.65 0.65
Support Vector Machines 0.55 0.55 0.54 0.68 0.67 0.67 0.70 0.69 0.69 0.64 0.63 0.63

In general, active learners are more effective than corre-
sponding passive learners for most classification tasks. How-
ever, as Castro and Nowak [5] prove, the extent to which
an active learner is more effective than a passive learner can
vary significantly. The difference can be trivial or orders of
magnitude based on noise conditions in the data. Thus, the
benefits of active learning must be quantified specific to each
domain. In that spirit, our work is the first to empirically
evaluate active learning for app review classification.

E. Threats to Validity

We identify three threats to the validity of our results and
describe our efforts toward mitigating those threats.

First, the accuracy of our results depend on the quality of
the labelled ground truth data. To mitigate a construct validity
threat of labeling bias, we use an existing dataset [24] labelled
with the majority class for each review—bug report, feature
request, experience, or rating. However, the genralizability of
our findings is still a threat. Although we chose a dataset which
is a random sample of over 1,300,000 reviews for about 1,200

8

0.5 0.6 0.7

BL

ALLC

ALM

ALH

Macro Precision @100% ED
0.5 0.6 0.7

BL

ALLC

ALM

ALH

Macro Recall @100% ED

0.5 0.6 0.7

BL

ALLC

ALM

ALH

Macro F1 Score @100% ED

Fig. 7. Macro evaluation metrics for the baseline (BL), and least confident (LC), margin (M), and entropy (H) based active learning classifiers.

iOS and Android apps, we acknowledge that experiments with
additional datasets are necessary to claim generalizability.

Second, the baseline approach in our evaluation randomly
chooses an initial set to acquire labels. Because of randomness,
the baseline approach can get lucky (or unlucky). To mitigate
this bias, we run our experiments multiple times (n = 30), and
report mean values of the metrics as well as their distributions
in most cases. Further, we conduct rigorous statistical tests to
indicate whether our findings are significant or not.

Finally, we notice that several reviews in the dataset we use
could be classified under more than one class label, but the
truth labels only contain the majority class. While our focus
was to reduce human effort in labeling and not to improve clas-
sification accuracy, future works could consider building and
using a dataset with multiple labels and employing multi-label
classification techniques to improve classification accuracy.

F. Directions

1) Active Multilabel Classification: We manually analyzed
several misclassified instances by both baseline and active
learning classifiers. For the baseline, when an instance was
misclassified, there were not any reviews similar to it in the
training set but there were many such test instances. These are
the cases where active learning is potentially beneficial.

We also analyzed scenarios in which active learning failed to
make correct predictions and made an interesting observation.
Often, both active learned and baseline classifiers made incor-
rect predictions when the ground truth was controversial. For
example, the following review is labelled as a Feature Request
in the training dataset: “This app is quite nice but ever since
the last update it keeps auto deleting. I have re-installed it
thrice including today. That is just wrong!” However, one may
argue that this review could have been labelled as a Bug Report
(and there are similar reviews labelled as Bug Reports). Such
instances throw off the active learner (as well as the baseline).

A promising direction toward addressing the challenge
above is multilabel classification. As McIlroy et al. [26] sug-
gest a third of app reviews raise more than one type of issue,
for instance, a review might contain both a feature request
and a bug report. Specifically, researchers have proposed active
learning techniques for multilabel classification problems [46],
[22]. Their effectiveness for classification of app reviews is an
interesting direction for future work.

2) Active and Semisupervised Learning: Although active
learning optimizes the human effort spent for labelling, even-
tually it only learns from labelled instances, ignoring a much
larger set of unlabelled reviews. Semisupervised learning [47],
a complementary technique to active learning, exploits the
unlabelled instances that a classifier is most confident in pre-
dicting, e.g., via self-training, in contrast to an active learner
that solicits human labelling for least confident predictions.
A future direction is to combine the two themes, where the
active learner first picks reviews to be labelled by humans and
the semisupervised learner is trained with both labelled and
unlabelled reviews. We conjecture that such a pipeline would
perform better than a solo active or semisupervised learning
pipeline. However, a semisupervised learner assumes that there
is an inherent structure in the unlabelled data that the learner
can recognize. It remains to be seen how well that assumption
holds for the noisy review data.

3) Active Learning in Context: We employed active learn-
ing in a passive learning scenario, where the app reviews have
assumed to have been generated, but we are seeking labels
for them. However, active learning can also be used in more
“active” scenarios where feedback can be elicited in real time.
To this end, Murukannaiah and Singh [32] describe an active
learning strategy for eliciting context labels from smartphone
users. An interesting extension to this work would be to elicit
requirements from users in context via active learning.

V. RELATED WORK

Several research works have focused on analyzing app
reviews [6], [14], [20], [43], app descriptions [18], and dis-
cussions about apps on various platforms including Reddit and
Twitter [12], [17], [19], to assist app developers and analysts
better understand end-user needs. We review these works and
others related to active learning in software engineering.

A. App Reviews Analysis

Guzman and Maalej [14] mine app features and sentiments
associated with these features. Their approach is frequency
based where non-common features can go undetected.

Johann et al. [18] propose a technique for gathering feature
information from app pages and app reviews. They match
features extracted from reviews and app description via binary
text similarity function, results of which are not always accu-
rate if the number of words in both candidates being compared

9

are not same. The deep manual approach adopted in their work
can be simplified by incorporating active learning.

Researchers have also employed unsupervised techniques
to analyze reviews. Chen et al. [6] propose AR-miner to filter
noninformative reviews from informative reviews, and rank the
reviews based on their significance. Binary class classification
is a simpler problem where we need to learn one boundary to
distinguish. Achieving high accuracy on a multiclass problem
with unsupervised learning is challenging. Gu and Kim [11]
develop SUR-Miner, a review summarization framework. It
classifies reviews, identifies various aspects and opinions about
those aspects in the review, and generate visual summaries.

Iacob and Harrison [17] develop MARA, a tool to extract
feature requests from app reviews. MARA mines features via
manually crafted keywords and linguistic rules, and employs
LDA to identify topics associated with features. McIlroy et
al. [26] deal with automatically assigning multilabels to user
reviews for detecting anomalous apps, and experiment with
various multilabeling approaches and classifiers.

Villarroel et al. [43] show how user reviews can be clustered
and prioritized for release planning. Unlike our approach, the
reviews in their work are classified as either bug reports or
features using Random Forest machine learning algorithm on
basis of predictor variables (i.e., ratings in this case). Palomba
et al. [34] use clustering algorithms to group user reviews
with similar user needs and feature suggestions. They classify
reviews as either information giving, information seeking,
feature request or problem discovery, and cluster preprocessed
source code and user feedback. These clusters of feedback are
linked to corresponding classes in source code which require
modifications for accommodating user suggested features.

B. Requirements Analysis and Classification

Guzman, Alkadhi and Seyff [12] discuss the importance of
analyzing reviews to improve an application. They perform a
manual content analysis of tweets and identify tweet categories
relevant to different stakeholders. They automate the manual
process by employing SVM and decision trees.

Williams and Mahmoud [45] manually classify 4,000 tweets
as bug reports and user requirements, and then employ SVM
and naive Bayes to categorize useful tweets. Guzman, Ibrahim
and Glinz [13] also mine tweets to identify requirements.
Active learning could assist in labeling process of these works.

Other relevant RE research works include frameworks and
techniques to analyze, classify or extract user requirements ei-
ther manually or automatically. Munaiah et al. [29] build one-
class classification technique for security requirements. Their
approach relies on security and non-security requirements be-
ing labelled. Thomas et al. [40] develop an analytic framework
and technique to identify privacy requirements from contextual
factors such as actors, information and places, and to refine the
identified requirements. Kanchev et al. [19] propose Canary,
a query language to extract requirements including arguments
supports and rebuts from online discussions. Canary depends
on crowd annotated database. Crowd effort in Canary can be
made effective by employing active learning.

C. Active Learning in Software Engineering

While active learning has not been employed in require-
ments engineering or for app review analysis, with a motiva-
tion to reduce the labeling effort, few works have employed
active learning in software engineering to classify test cases
and to identify defects. Lucia et al. [23] propose an active
learning approach to classify true positives and false positives
in anomaly reports. Wang et al. [44] propose LOAF, an active
learning based technique to classify test reports that are useful
and that are not. They compare LOAF with three baseline
active learning strategies—margin sampling, least confidence,
and informative and representative and found that LOAF yields
better accuracy and efficiency than the baseline. However,
these works are limited to binary classification.

Murukannaiah and Singh [32] develop Platys, an active
learning based framework to learn a user’s model of places.
They empirically evaluate Platys via a developer study and find
that their framework significantly reduces development effort.
Murukannaiah and Singh’s work elicits users places via active
learning. The effectiveness of incorporating this approach in
eliciting detailed requirements from users remains to be seen.
A key challenge here is to not frustrate the users.

Most similar to our work is Thung, Li and Lo’s [41]
work on defect categorization. They develop an active and
semisupervised multi-class classification method to classify
defects into three defect families—control and data flow,
structural, and non-code, and find that their approach performs
significantly better than the baseline. Compared to Thung, Li
and Lo’s dataset that only contain 500 bug reports for three
apps, our dataset draws a sample of 4,400 reviews from over
1,300,000 reviews covering nearly 1,200 apps. Whereas bug
reports are likely to be better structured since they are written
by testers and developers, app reviews written by end users
are likely to be more unstructured and noisy, making the task
of app review classification significantly harder.

VI. CONCLUSIONS

Two emerging themes in RE are exploiting Artificial In-
telligence (e.g., machine learning and NLP for RE), and
exploiting human intelligence (e.g., Crowd RE). These two
themes are complimentary [31] in that AI techniques are often
inexpensive, but may not be effective to the creative field of RE
without human involvement. In contrast, Crowd RE techniques
are expensive and may not be viable without some automation.

Active learning, as we employ in the paper, seeks to bridge
these two themes by efficiently spending the human effort in
an automated review classification task. Although automated
approaches have been proposed to assist in searching for
valuable app reviews, unsupervised techniques fail to achieve
nuanced tasks, whereas supervised techniques incur human
effort for labelling. We propose to exploit active learning as
a middleground solution, which seeks to optimize the human
effort incurred in a supervised approach by choosing the most
informative training set. As our results indicate, active learning
can significantly reduce the human effort required for training
app review classifiers valuable to RE.

10

REFERENCES

[1] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider,
“What works better? a study of classifying requirements,” in Proceedings
of the 25th IEEE International Requirements Engineering Conference
(RE), Ottawa, Sep. 2017, pp. 496–501.

[2] D. M. Berry, “Evaluation of tools for hairy requirements and software
engineering tasks,” in Proceedings of 25th IEEE International Require-
ments Engineering Conference Workshops (REW), Lisbon, Sept 2017,
pp. 284–291.

[3] T. D. Breaux and F. Schaub, “Scaling requirements extraction to
the crowd: Experiments with privacy policies,” in Proceedings of the
22nd IEEE International Requirements Engineering Conference (RE),
Karlskrona, Aug. 2014, pp. 163–172.

[4] L. V. G. Carreño and K. Winbladh, “Analysis of user comments: An
approach for software requirements evolution,” in Proceedings of the
35th International Conference on Software Engineering (ICSE), San
Francisco, May 2013, pp. 582–591.

[5] R. M. Castro and R. D. Nowak, “Minimax bounds for active learning,”
IEEE Transactions on Information Theory, vol. 54, no. 5, pp. 2339–
2353, May 2008.

[6] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “Ar-miner: Mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software Engi-
neering (ICSE), Hyderabad, May 2014, pp. 767–778.

[7] A. Culotta and A. McCallum, “Reducing labeling effort for structured
prediction tasks,” in Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI), Pittsburgh, Jul. 2005, pp. 746–751.

[8] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? Summarizing app reviews for recommending software changes,”
in Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), Seattle, Nov 2016, pp.
499–510.

[9] EDC, “Mobile developer population reaches 12M worldwide, expected
to top 14M by 2020,” https://evansdata.com/press/viewRelease.php?
pressID=244, Oct. 2016.

[10] E. C. Groen, N. Seyff, R. Ali, F. Dalpiaz, J. Doerr, E. Guzman,
M. Hosseini, J. Marco, M. Oriol, A. Perini, and M. Stade, “The crowd
in requirements engineering: The landscape and challenges,” IEEE
Software, vol. 34, no. 2, pp. 44–52, Mar. 2017.

[11] X. Gu and S. Kim, “What parts of your apps are loved by users?”
in Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Lincoln, NE, Nov. 2015, pp.
760–770.

[12] E. Guzman, R. Alkadhi, and N. Seyff, “A needle in a haystack: What
do twitter users say about software?” in Proceedings of the 24th IEEE
International Requirements Engineering Conference (RE), Beijing, Sep.
2016, pp. 96–105.

[13] E. Guzman, M. Ibrahim, and M. Glinz, “A little bird told me: Mining
tweets for requirements and software evolution,” in Proceedings of the
25th IEEE International Requirements Engineering Conference (RE),
Lisbon, Sep. 2017, pp. 11–20.

[14] E. Guzman and W. Maalej, “How do users like this feature? A fine
grained sentiment analysis of app reviews,” in Proceedings of the
22nd IEEE International Requirements Engineering Conference (RE),
Karlskrona, Aug. 2014, pp. 153–162.

[15] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature:
How misclassification impacts bug prediction,” in Proceedings of the
2013 International Conference on Software Engineering (ICSE), San
Francisco, May 2013, pp. 392–401.

[16] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods.
Wiley, 1999.

[17] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR), San Francisco, Oct.
2013, pp. 41–44.

[18] T. Johann, C. Stanik, A. M. A. B., and W. Maalej, “SAFE: A simple
approach for feature extraction from app descriptions and app reviews,”
in Proceedings of the 25th IEEE International Requirements Engineering
Conference (RE), Lisbon, Sep. 2017, pp. 21–30.

[19] G. M. Kanchev, P. K. Murukannaiah, A. K. Chopra, and P. Sawyer,
“Canary: Extracting requirements-related information from online dis-

cussions,” in Proceedings of the 25th IEEE International Requirements
Engineering Conference (RE), Lisbon, Sep. 2017, pp. 31–40.

[20] Z. Kurtanovic and W. Maalej, “Mining user rationale from software
reviews,” in Proceedings of the 25th IEEE International Requirements
Engineering Conference (RE), Lisbon, Sep. 2017, pp. 61–70.

[21] Z. Kurtanovi and W. Maalej, “Automatically classifying functional and
non-functional requirements using supervised machine learning,” in
Proceedings of the 25th IEEE International Requirements Engineering
Conference (RE), Ottawa, Sep. 2017, pp. 490–495.

[22] X. Li and Y. Guo, “Active learning with multi-label SVM classification.”
in Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), Beijing, Aug. 2013, pp. 1479–1485.

[23] Lucia, D. Lo, L. Jiang, and A. Budi, “Active refinement of clone
anomaly reports,” in Proceedings of the 34th International Conference
on Software Engineering (ICSE), Zurich, Jun. 2012, pp. 397–407.

[24] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Engineering, vol. 21, no. 3,
pp. 311–331, Sep. 2016.

[25] W. Maalej and H. Nabil, “On the automatic classification of
app reviews: Project data,” https://mast.informatik.uni-hamburg.de/
app-review-analysis/, accessed: March 2018.

[26] S. Mcilroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and
automatically labelling the types of user issues that are raised in mobile
app reviews,” Empirical Software Engineering, vol. 21, no. 3, pp. 1067–
1106, Jun. 2016.

[27] S. McIlroy, W. Shang, N. Ali, and A. E. Hassan, “Is it worth responding
to reviews? studying the top free apps in google play,” IEEE Software,
vol. 34, no. 3, pp. 64–71, May 2017.

[28] I. Morales-Ramirez, D. Muante, F. Kifetew, A. Perini, A. Susi, and
A. Siena, “Exploiting user feedback in tool-supported multi-criteria re-
quirements prioritization,” in Proceedings of the 25th IEEE International
Requirements Engineering Conference (RE), Lisbon, Sep. 2017, pp.
424–429.

[29] N. Munaiah, A. Meneely, and P. K. Murukannaiah, “A domain-
independent model for identifying security requirements,” in Proceed-
ings of the IEEE 25th International Requirements Engineering Confer-
ence (RE), Lisbon, Sep. 2017, pp. 506–511.

[30] P. K. Murukannaiah, N. Ajmeri, and M. P. Singh, “Acquiring creative re-
quirements from the crowd: Understanding the influences of personality
and creative potential in Crowd RE,” in Proceedings of the 24th IEEE
International Requirements Engineering Conference (RE), Beijing, Sep.
2016, pp. 176–185.

[31] ——, “Toward automating Crowd RE,” in Proceedings of the IEEE 25th
International Requirements Engineering Conference (RE), Lisbon, Sep.
2017, pp. 512–515.

[32] P. K. Murukannaiah and M. P. Singh, “Platys: An active learning
framework for place-aware application development and its evaluation,”
ACM Transactions on Software Engineering and Methodology, vol. 24,
no. 3, pp. 1–33, May 2015.

[33] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Proceedings of the 21st IEEE International Requirements
Engineering Conference (RE), Rio de Janeiro, Jul. 2013, pp. 125–134.

[34] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. C. Gall,
F. Ferrucci, and A. D. Lucia, “Recommending and localizing change
requests for mobile apps based on user reviews,” in Proceedings of the
39th International Conference on Software Engineering (ICSE), Buenos
Aires, May 2017, pp. 106–117.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and douard
Duchesnay, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, Oct. 2011.

[36] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden Markov models
for information extraction,” in Proceedings of the 4th International
Conference on Advances in Intelligent Data Analysis (IDA), Cascais,
Sep. 2001, pp. 309–318.

[37] B. Settles, Active Learning. Morgan & Claypool, 2012.
[38] B. Settles and M. Craven, “An analysis of active learning strategies for

sequence labeling tasks,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), Honolulu, Oct.
2008, pp. 1070–1079.

[39] Statista, “Number of mobile app downloads worldwide in 2017,
2018 and 2022 (in billions),” https://www.statista.com/statistics/271644/
worldwide-free-and-paid-mobile-app-store-downloads/, May 2018.

11

[40] K. Thomas, A. K. Bandara, B. A. Price, and B. Nuseibeh, “Distilling
privacy requirements for mobile applications,” in Proceedings of the 36th
International Conference on Software Engineering (ICSE), Hyderabad,
May 2014, pp. 871–882.

[41] F. Thung, X.-B. D. Le, and D. Lo, “Active semi-supervised defect cate-
gorization,” in Proceedings of the 23rd IEEE International Conference
on Program Comprehension (ICPC), Florence, May 2015, pp. 60–70.

[42] S. Tong and D. Koller, “Support vector machine active learning with ap-
plications to text classification,” Journal of Machine Learning Research,
pp. 45–66, Mar. 2002.

[43] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta, “Release
planning of mobile apps based on user reviews,” in Proceedings of the
38th International Conference on Software Engineering (ICSE), Austin,
May 2016, pp. 14–24.

[44] J. Wang, S. Wang, Q. Cui, and Q. Wang, “Local-based active classifi-
cation of test report to assist crowdsourced testing,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), Singapore, Aug. 2016, pp. 190–201.

[45] G. Williams and A. Mahmoud, “Mining twitter feeds for software
user requirements,” in Proceedings of the 25th IEEE International
Requirements Engineering Conference (RE), Lisbon, Sep. 2017, pp. 1–
10.

[46] B. Yang, J.-T. Sun, T. Wang, and Z. Chen, “Effective multi-label
active learning for text classification,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), Paris, Jun. 2009, pp. 917–926.

[47] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,”
Synthesis lectures on artificial intelligence and machine learning, vol. 3,
no. 1, pp. 1–130, 2009.

12

