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Abstract. We propose Exanna , a framework to realize agents that
incorporate values in decision making. An Exanna agent considers
the values of itself and others when providing rationales for its ac-
tions and evaluating the rationales provided by others. Via multiagent
simulation, we demonstrate that considering values in decision mak-
ing and producing rationales, especially for norm-deviating actions,
leads to (1) higher conflict resolution, (2) better social experience,
(3) higher privacy, and (4) higher flexibility.

1 Introduction
A social norm states a shared standard of acceptable behavior in a
society [31] and provides a basis for legitimate expectations regard-
ing the behavior of others in the society. Each agent plays two roles:
actor and observer. While exercising autonomy, an actor can deviate
from the norms [26]. Such deviations may result in social conflicts
and trigger positive or negative sanctions from observers. An accept-
able rationale [33] can justify a deviation from a social norm.

Example 1 Sharing a rationale. Alice wears a mask to the office
and notices that Bella is not wearing a mask. Bella justifies her deci-
sion by stating that, first, the office has no mask mandate as the sur-
rounding environment is safe. Second, she hates wearing a mask be-
cause wearing one gives her eczema. Alice agrees with Bella’s view.

A rationale provides the information to justify a decision [15]. In
practice, rationales include additional information that others may be
unable to observe, such as the actor’s beliefs and preferences. Craft-
ing a rationale remains an ongoing challenge. Rationales may be ver-
bose, leading to information overload. Additionally, they might en-
compass private information that one may be hesitant to disclose, a
concern particularly prevalent in healthcare settings.

Example 2 Adapting a rationale. Bella and Alice share a concern
for health. Despite Bella’s aversion to wearing a mask because of
eczema, given the safe environment, she feels it unnecessary to dis-
close her skin condition. Bella rationalizes her behavior of not wear-
ing a mask by stating that the surrounding environment is secure and
that a mask is unnecessary. Alice finds Bella’s rationale acceptable.

Values are motivational bases of one’s behavior [23]. Reasoning
about values is an essential capability to align agents with the values

of their stakeholders [34, 35, 36], including providing and recogniz-
ing felicitous rationales for one’s behaviors [18]. Deliberating over
others’ values can enhance persuasiveness and foster acceptance.

Instead of sharing all available and related information in a ratio-
nale, it is beneficial for an agent to share only the information that
aligns well with self and others’ values. Sharing such information
preserves the privacy of the rationale provider and ensures that un-
necessary information does not inundate the observer of a rationale.

Contribution and Findings Accordingly, this paper extends be-
yond existing research by considering values in decision making and
rationale generation and evaluation. Our Exanna framework gener-
ates rationales that incorporate values and include only the informa-
tion needed to justify a decision.

We evaluate Exanna via a multiagent simulation based on a pan-
demic scenario. We consider societies of agents with different kinds
of rationales: Share-All, Share-Rules, and share value-aligned rules.
With Exanna , we find that agents who consider value importance
when giving rationales exhibit enhanced conflict resolution capabili-
ties. Additionally, rationales aligned with values, albeit with less in-
formation provided, contribute to more favorable social experience.

Novelty Although prior research supports constructing explana-
tions or making decisions based on values, this is the first study to
investigate how values guide producing and using rationales for norm
violation to support norm emergence and improve social experience.

Organization Section 2 discusses relevant related works. Section 3
details the Exanna framework. Section 4 describes a simulated pan-
demic scenario for evaluation. Section 5 demonstrates the results.
Section 6 concludes with listing potential future directions.

2 Related Work

Research on agents interacting based on their rationales and model-
ing values is relevant to our approach.

Agents and Rationales Hind et al. [14] leverage existing super-
vised machine-learning techniques to generate rationales together
with decisions without values involved and without exposing the
inner details of the model. Whereas Hind et al. generate rationales
based on the existing training set, Exanna generates rationales based
on context and values.



Georgara et al. [11] show how to build rationales on why specific
teams are formed. Specifically, Georgara et al. build rationales based
on contrastive explanations and by exploring what-if scenarios. A
causal attribution explains why a behavior occurs. We provide causal
attribution of the selected action, precisely the premise, as rationale
and withhold private information based on values.

Wang et al. [32] formulate rationales with the simplest subset of
features that is sufficient as causal attribution for probabilistic solid
guarantees on model behavior under observed data distribution. Con-
treras et al. [7] propose a mirror model and assume a high under-
standability from performing similar to an observer’s mental simu-
lation. They apply deep Q-network and saliency maps in rationale
generation, highlighting related input features as rationales. These
works reveal model features but not consider values.

Ajmeri et al. [2] propose Poros, a framework that shares full con-
text as a rationale. Therefore, agents can adopt the perspectives of
others and make corresponding decisions. However, Ajmeri et al. do
not consider values. In Exanna , an actor selectively shares informa-
tion based on its values and those of the observer.

Agents, Norms, and Values Tzeng et al. [29] define social com-
munication (sanction, message, and hint), which besides actual re-
ward or punishment, indicates normative information and potential
outcomes. Unlike signaling others with normative information, ratio-
nales can enable information sharing and conflict resolution. Tzeng
et al. [28] incorporate social value orientation (SVO) in decision
making. Whereas values define what is important to agents, SVO
describes the importance an agent places on its gain in relation to
others. Exanna covers a broader range of motivations and behaviors.

Cranefield et al. [8] represent agents’ plans to achieve goals as a
goal-plan tree and expand the Belief-Desire-Intention language by
annotating actions with the effects regarding values. Lera-Leri et al.
[16] consider ethical principles (e.g., maximum utility and maximum
fairness) for aggregating value systems, not just one value. Ajmeri
et al. [3] aggregate users’ value preferences to make ethically ap-
propriate decisions. Besides making decisions based on aggregate
value importance, Exanna agents generate rationales for their deci-
sions with necessary information.

Agrawal et al.’s [1] agent learns norms as rules of optimal behav-
iors, but considers no values. Exanna adaptively shares learned rules
as rationales that align with individuals’ values.

Mosca and Such’s [20] agent supports values in multiuser settings
by considering the preferences and values of users. The agents justify
solutions through contrastive explanations and positive answers. Ex-
anna presents factors in alignment with values rather than presenting
all that convey causal attribution.

Whereas other works construct explanations with values [33] or
make decisions based on values [8], our focus is on building suit-
able rationales and investigating how value-aligned rationales shape
decision making and influence social experience, especially privacy.
Previous research considers only the causal links between the behav-
iors and each contextual factor but not the importance of the factors.
Is it essential to include every single related factor? Numerous fac-
tors may come into play in real-world situations, yet people typically
do not provide or need to provide exhaustive explanations to account
for every one of these factors.

Ogunniye and Kökciyan [21] propose an ontology to represent the
privacy domain. They introduce argumentation-based multiparty di-
alogues to reason about contextual norms, and resolve privacy con-
flicts. Di Scala and Yolum [10] propose an argumentation-based
agent to achieve agreement on privacy among multiple users. Their
agent provides feedback to the user, such as a summary or detailed

advice on possible actions to improve performance. Whereas privacy
is a right motivated by values, Exanna encompasses broader aspects
of core values that serve as guiding principles for decisions and ra-
tionales. Additionally, rationales focus on explaining decisions while
these works prioritize maintaining privacy among multiple users via
argumentation. Aycı et al. [4] explain the privacy decisions (sharing
content) using labels (private or public) that are assigned to topics
predicted by machine learning. While their values (privacy) come
from post-interpretation from humans, Exanna incorporates values
in rationale construction.

Table 1 summarizes the above comparisons, emphasizing values
and rationales. Whereas explanations imply clarity and satisfaction
to the recipient, we emphasize justifying a decision based on un-
derlying values without modeling the recipient’s comprehension or
acceptance of the rationale.

3 Method
We now describe the schematics and decision making in Exanna
along with its rationale components.

3.1 Schematics of an Exanna Agent

Belief: An agent’s view of the world, formed based on observations.
bt indicates the belief at time t. A belief is captured as a set of pairs
of attributes and bindings.

Context: The factors that characterize the situation of an agent.
Context is represented as a set of attribute-binding pairs. An ex-
ample of context is as follows.

{Risk=None, Preference= ¬Wear,
InteractWith=Colleague,
OtherAgentType=Health,
RiskFromAnother=High,
Location=Office}

A context comprises public (e.g., an agent’s location) and private
(e.g., beliefs, preferences, and values) factors. Contextual factors
may be associated with values (e.g., Risk relates to Health).

Goal: A set of states that an agent wants to achieve. The outcome of
a goal after performing the selected actions is binary: achieved or
not.

Action: A means to change the state in pursuit of one’s goals and
maximize associated payoffs.

Preference: A subjective inclination for an action over the alterna-
tives.

Decision rule: A mapping between a premise (set of attribute-
binding pairs) and a consequent (an action to be taken). An ex-
ample rule is

{Risk=None, InteractWith=Colleague} =>
¬Wear

Norm: The expected behavior or the behavior of the majority in a
group. When a majority applies the same decision rule, the rule
becomes a norm. In Exanna , a norm uses the same if-then repre-
sentation as a decision rule.

Sanction: A response to norm violation or satisfaction. A sanction
can be a positive or negative reaction from one agent to another.

Payoff: The benefits an agent receives in a given state after taking
an action. Payoffs involve intrinsic benefits (e.g., preferences) and
extrinsic benefits (e.g., sanctions imposed by others).

Values: General motivations of agents. Specifically, values define
what agents believe to be important, while goals are the desired



Table 1: Summary of comparisons with related work with respect to the application of values in decision making and in the generation and
evaluation of rationales. Withhold means that not all factors are presented in the rationale.

Rationale Withhold Values applied in Rationale representation
Decision Rationale

Cranefield et al. [8] ✗ ✗ ✓ ✗ No rationales provided
Ajmeri et al. [3] ✗ ✗ ✓ ✗ No rationales provided
Lera-Leri et al. [16] ✗ ✗ ✓ ✗ No rationales provided
Tzeng et al. [28] ✗ ✗ ✓ ✗ No rationales provided

Agrawal et al. [1] ✓ ✗ ✗ ✗ Norm as causal attribution but no information hiding
Georgara et al. [11] ✓ ✗ ✗ ✗ Original allocation and another solution with constraints
Contreras et al. [7] ✓ ✗ ✗ ✗ Highlighted input features in deep Q-network but no information hiding
Wang et al. [32] ✓ ✗ ✗ ✗ Prediction and a minimum subset of inputs but no information hiding
Hind et al. [14] ✓ ✗ ✗ ✗ Texts predicted via supervised learning, along with the predicted action
Ajmeri et al. [2] ✓ ✗ ✗ ✗ Full context

Mosca and Such [20] ✓ ✗ ✓ ✓ Suggested action based on inputs from all users and possible outcome of the
user’s preference as causal attribution, but no information hiding

Winikoff et al. [33] ✓ ✗ ✗ ✓ English mapping of traversed nodes from goal-tree relevant to the explanation
Exanna ✓ ✓ ✓ ✓ Behavior rules (with information hiding) and alignment with values

states. Whereas goals are time-bounded and dynamic to context,
values are long-lasting and stable and may transcend contexts
[17]. A subset of values is applicable within a context [17], and
each agent assigns an importance rating to each value.

Value importance: The importance of values in one context [23].
We store each value importance Vcontext in a tuple where num-
bers add up to 1. vi denotes the weight of one value in one
value importance (vi ∈ Vcontext) where 0 ≤ vi ≤ 1 and∑n

i=1 vi = 1. We treat each context as an attribute and store the
corresponding ⟨Vcontext⟩ as its binding. For instance, an agent
with value importances V = {Vpandemic = {vhealth = 0.6,
vprivacy = 0.4};Vnormal = {vhealth = 0.4, vprivacy = 0.6}}
indicates that the agent values health over privacy during a pan-
demic but the opposite in a normal context.

3.2 Payoff Calculation with Values

Whereas preferences define the tendency of an individual to make
a subjective selection among alternatives, values define the impor-
tant things to an individual. Although both values and preferences
are context-specific, values may transcend contexts [17]. Each agent
stores values in a tuple where each value maintains a correspond-
ing Mindividual. Since agents do not make decisions with single values
but with tradeoffs among multiple related values, we aggregate value
importances when constructing a payoff [3, 22]. Below, f is the ag-
gregated payoff with all corresponding values after selecting strategy
Rx when the other player selects strategy Cy from Mindividual.

f =

values∑
i

vi × ri,RxCy (1)

We model interactions with payoffs f from the aggregation of
Mindividual.

3.3 Interaction and Decision Making

Interactions in Exanna are between an actor (rationale provider) and
an observer (rationale observer), as shown in Figure 1. An actor se-
lects an action based on its goal and beliefs and provides a rationale
to the observer who witnesses its behavior. Upon receiving a ratio-
nale from the actor, the observer evaluates the rationale by making

an analogous decision. With a weighted sum of payoffs, we incorpo-
rate values in decision making where a substantial value casts a more
significant effect on the final decision.
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Figure 1: Interactions between Exanna agents.

Algorithm 1 gives the pseudo-code of an agent’s decision-making
loop. An agent forms beliefs bt about the world based on its observa-
tions (Line 4). An agent’s payoff is a weighted sum of payoffs corre-
sponding to its values, goal achievement, and factors influencing the
decision-making process, such as social circle or social environment.
The Q function in Line 7 and reward in Line 8 refer to the payoff
calculation in Section 3.2, which incorporate value importances and
feedback from others. In Line 7, the agent selects the action that gives
the best payoff for bt. If the agent interacts with another agent, for
its action the agent creates rationales based on bt (including values
of both parties) and the selected action (Line 11 with Algorithm 2)
and sends those rationales. Other agents who observe the action and
receive the rationales update their beliefs, evaluate the rationales (Al-
gorithm 3) with their context, and give sanctions accordingly. Algo-
rithm 4 defines a function to retrieve value importance from beliefs
based on context. Exanna applies to scenarios that can be modeled
as a partially observable Markov decision process and with clearly
defined links between values and contextual factors.

3.4 Rationale Generation

Rationale generation in Exanna follows a rule learning process—
a process of evolving rules from datasets or interactions. The basic
form of a rule is if premise then consequent, where the consequent
holds whenever the premise is true. We adapt XCS [5], which ap-
plies a genetic algorithm and reinforcement learning to evolve a set of



Algorithm 1 Decision making for an Exanna agent

1: Initialize agent (including value importances V and other mental
states)

2: Initialize rule-value function Q
3: for t ∈ {1, . . . , T} do
4: Form beliefs bt based on perceived state
5: Identify action space A
6: Vactor, Vobserver = GetValueImportance(bt)
7: With a probability ϵ select a random action aactor ∈ A

Otherwise select aactor = argmaxaQ(bt, a, Vactor)
8: Execute action aactor and observe reward rt
9: if any observer agent observer exist then

10: /* Generate rationales based on selected action and beliefs
*/

11: Ratactor = GenRationale(bt, aactor)
12: Send Ratactor to observer
13: Receive sanction sanctionobserver from observer
14: Observe agent observer’s action aobserver

15: if Receive rationales Ratobserver from agent observer
then

16: Update beliefs bt based on Ratobserver
17: end if
18: /* Generate sanctions based on beliefs and rationales */
19: sanctionactor = EvalRationale(Ratobserver , aobserver ,

bt)
20: end if
21: /* Agents learn from reward and sanction */
22: learn(bt, aactor , rt + sanctionobserver , bt+1)
23: end for

rules or strategies based on payoffs or rewards produced by the pro-
posed actions. Unlike other machine learning techniques, XCS gen-
erates a set of rules describing its decision. XCS process enables flex-
ibility for the implementation of norms and supports interpretability
by producing logical rules. An example rule of Example 2 is

{Risk=None, InteractWith=Colleague} => ¬Wear
The premise of a learned rule is a conjunction of attribute-binding
pairs, e.g., {Risk=None, InteractWith=colleague}. Its consequent is
an action to be taken when the premise holds—in the above example,
¬Wear. Each rule associates (1) a fitness, i.e., its suitability, (2) a
numerosity, i.e., the number of its instances in the rule set, (3) the
expected reward if the rule applies, and (4) prediction error.

3.4.1 XCS for Rationale Generation Briefly

The key features of XCS are Rule Discovery, Rule Subsumption,
and Action Selection. Rule discovery through the crossover and mu-
tation processes involves introducing randomness to the antecedent
by adding or removing factors, thereby generating rules that are more
general or more specific. Given two rules, if the more general one ex-
hibits lower predictive error within the given context, the algorithm
retains it and discards the more specific one. When selecting an ac-
tion, the algorithm selects the one with the best-aggregated fitness.
Details on XCS are in Appendix A.

An example of a rationale for not wearing a mask is {Risk=None,
Preference=¬Wear, InteractWith=colleague}. This rule means the
mask is not needed when there is no infection risk and the actor
prefers not to wear a mask while interacting with a colleague. Each
agent keeps the rules it discovers and evolves those in a rule set for
decision making.

3.4.2 Generating Value-Based Rationale

Not all factors of a rule generated by the rule learning process are
suitable for inclusion in a rationale. In Example 2, sharing personal
preferences is unnecessary when both agents value health. After gen-
erating the base rule, we post-process its factors using the values of
the actor and observers. Thus, the agent who prefers the value of
health adjusts its rationale for the colleague who also cares about
health to a health-related causal attribution if it exists. For instance,
no mask is required because there is no risk of infection when inter-
acting with a colleague.

Algorithm 2 details the process of constructing rationale. An agent
identifies its rules associated with beliefs bt (Line 3) and the selected
action (Line 4) and then aggregates all rules related to a rationale
(Line 5). To minimize information exposure, an agent reveals private
information only if it is associated with its values or those of others
involved in the interaction (Line 8–9). For instance, if an agent who
cares about freedom interacts with one who cares about freedom, it
will exclude the infection risk from the environment in its rationales.
For each rationale, an agent estimates privacy based on the least pro-
portion of private factors included in the rationale (Line 13).

Algorithm 2 Rationale generation
Input: beliefs bt, Action a
Output: Rationale Rat
Function: GenRationale

1: Identify private factors P ⊆ bt
2: /* Generate associated rules with beliefs bt */
3: Get match set ms with bt
4: Generate action set from ms with a
5: Aggregate rules Rat associated with action set
6: Vactor, Vobserver = GetValueImportance(bt)
7: for factor in Rat do
8: if factor ∈ P and factor not related to Vactor and Vobserver

then
9: remove factor from Rat

10: end if
11: end for
12: /* Compute privacy based on proportion of private factors */
13: privacy = 1− #private factors revealed in Rat

#private factors in Rat

3.5 Rationale Evaluation

On receiving a rationale from the actor, the observer first updates its
beliefs based on the rationale. Specifically, the observer updates the
beliefs of unobservable information from the actor’s context. In the
rationale generation mask example, the observer updates its beliefs
of the infection risk to “None”. When evaluating a rationale, the ob-
server makes an analogous decision based on the updated beliefs. If
the observer’s computed action matches the actor’s observed action
in that context, the observer accepts the actor’s rationale.

Algorithm 3 defines how agents evaluate rationales. Initially, in
Line 2, the observer updates its beliefs bt based on the private con-
text or beliefs included in the actor’s rationale. Subsequently, the
agent makes a decision analogous to the actor’s context based on the
updated beliefs. Specifically, with the provided rationale, an agent
checks if any applicable rules align with its rule sets in Line 3. The
agent identifies associated rules from bt and adds them to applicable
rules in Line 4. In Line 7, the agent calculates the fitness for each
available action for each applicable rule and keeps the best action



for each rule. The agent accepts this rationale if any selected action
matches the observed action.

Algorithm 3 Evaluating a rationale
Input: Rationales Rat, Observed action aobserver , Beliefs bt
Output: Decision d
Function: EvalRationale

1: Initialize applicable rules ars
2: Update bt with private information in Rat
3: Add triggered match set from Rat to applicable rules ars
4: Add triggered match set from bt to applicable rules ars
5: for rule in applicable rules ars do
6: for act in possible actions do
7: calculate fitness fact
8: end for
9: Keep the act with best fitness

10: end for
11: if act contains aobserver then
12: Decision d = accept;
13: else
14: Decision d = reject;
15: end if

Algorithm 4 Get value importance
Input: Beliefs bt
Output: Value importance Vactor, Vobserver

Function: GetValueImportance
1: context = get_context(bt)
2: /* Retrieve actor and observer’s value importances from bt based

on context */
3: Vactor, Vobserver = get_value_importance(bt, context)
4: if no observer exist then
5: Vobserver = null
6: end if

4 Simulation
Real-world factors may be associated with underlying values. For
instance, health state corresponds to health concerns. We assume the
importance of factors according to their associated values.

We evaluate Exanna via a pandemic scenario based on Examples 1
and 2 and simulated using MASON [19]. Here agents move to var-
ious places, interact with other agents, decide to wear or not wear a
mask, and provide a justification for their actions.

4.1 Scenario

The environment represents a multiagent society with several places
and social circles. Our environment involves a finite population of
200 agents with different social circles. The environment includes
one park, one hospital, five homes, five offices, and five parties.
Agents move around and interact within these five places. Each agent
is native to one home, one office, and one party. Agents in the same
home, office, or party share the same family, colleague, or friend so-
cial circle. Each social circle has 40 agents. Time is represented in
steps. Each agent moves to one place at each step and has a probabil-
ity (50%) of interacting with one agent at the same place. Agents are
more likely (75%) to move to places they are associated with when

they move to home, office, and party, i.e., an agent is more likely to
visit their own home rather than someone else’s home.

Each agent forms its goal based on its value importances. Specifi-
cally, each value in one context has a payoff matrix (Table 5 and 6);
the weighted sum of the payoff determines the goal (desired states).
An agent selecting an action that does not align with its goal is con-
sidered deviating from its goal.

In the simulated environment, when an agent encounters another
agent at the same place, it chooses an action based on its goal—
whether to wear a mask. In addition, the agent justifies its behavior
based on its beliefs in that context. For instance, the agent gives a
rationale—{Risk=None, InteractWith=Colleague}—while not wear-
ing a mask. The beliefs of an agent include public and private fac-
tors. Each agent receives a payoff according to the interaction place
for action selection, as in Table 2. Wearing a mask at a hospital dur-
ing a pandemic is desirable. Place and value importances determine
the payoff an agent gives to itself. An agent also gives sanctions as
feedback to others based on their actions.

The sanctions are based on the social circle. Table 3 lists the sanc-
tions associated with social circles. We run each simulation 10 times,
with each run lasts 30,000 steps. We consider the values of freedom
and health. In this setting, freedom refers to agents claiming their
free will and adhering to their preferences.

Table 2: Actor’s payoff based on the place. Numbers reflect general
expectations of places.

Places Wear ¬Wear

Home −0.25 0.25
Office 0.25 −0.25
Party −0.25 0.25
Park −0.50 0.50
Hospital 0.50 −0.50

Table 3: Feedback from an observer based on social circle.

Social
Circle

Observer move

Reject Accept

Family −1.00 1.00
Friend −0.75 0.75
Coworker −0.50 0.50
Stranger −0.25 0.25

Table 4: Payoffs corresponding to a preference for wearing a mask.
Agent 2

Wear ¬ Wear

Wear 1.00 1.00

A
ge

nt
1

¬ Wear −1.00 −1.00

Table 5: Payoffs corresponding to a preference for not wearing a
mask.

Agent 2

Wear ¬ Wear

Wear −1.00 −1.00

A
ge

nt
1

¬ Wear 1.00 1.00



Table 6: Payoffs for the value of health. The numbers reflect how safe
an agent feels.

Infection risk

No risk High risk

Wear 0.00 1.00

A
ct

io
n

¬ Wear 0.00 −1.00

4.2 Contextual Properties

Whereas agents have limited observations on the environment, the
context includes the place (home, office, party, park, and hospital)
where interactions occur, the relationship (family, friend, colleague,
and stranger) with the observer, the subjective belief of infection risk
of the environment, the personal preference on mask-wearing, and
the types of observers. Due to the partial observations, agents act
based on their beliefs and update the beliefs with given rationales.

4.3 Types of Societies

We define types of societies based on the rationale types. All societies
include 50% of agents value health and 50% of agents value freedom.
The value importances of agents are presented in Table 7. All agents
optimize their behavior based on the weighted sum of payoffs from
themselves and others.

Baseline 1: Share-All Society Agents share all information as ra-
tionales and are capable of assuming the viewpoints of others to
facilitate decision making.

Baseline 2: Share-Rules Society Agents share their decision rules
as rationales.

Exanna: Share Value-Aligned Rules Society Agents share their
decision rules along with selected information that aligns with the
values of agents present as rationales.

Table 7: Value importances of agents in a pandemic setting. Each
society has half Freedom-loving and half Health-freak agents.

Agents: Values Freedom Health

Freedom-loving 1.00 0.00
Health-freak 0.00 1.00

4.4 Evaluation

We run simulations with the Share-All, Share-Rules, and Exanna so-
cieties. We evaluate hypotheses on resolution, social experience, pri-
vacy, and flexibility using the following metrics.

MResolution ∈ [0, 100] Percentage of rationales accepted.
MSocial ∈ [–3, 3] Aggregated payoff that an agent re-

ceives for its behavior.
MPrivacy ∈ [0, 1] Proportion of private information re-

tained during an interaction.
MFlexibility ∈ [0, 1] Extent of deviation from an agent’s

own goal.
We conduct the independent t-test across pairs of societies. We

measure effect size with Glass’s [12] ∆ since the societies have dif-
ferent standard deviations [13]. We adopt Cohen’s [6] descriptors
to interpret effect size: <0.2 (negligible), [0.2,0.5) (small), [0.5,0.8)
(medium), and ≥0.8 (large).

5 Results
Table 8 summarizes our statistical analyses. Exanna offers higher
social experience, conflict resolution, and flexibility, indicating that
Exanna agents learn to act for the greater societal good. These results
follow our intuition that value-aligned rationales are superior. How-
ever, if an agent prefers to keep certain information private, deviation
from goals is expected. Results for the Share-All and Share-Rules so-
cieties indicate that increased information in a rationale may not be
helpful.

Table 8: Results: Comparing mean (X̄) and standard deviation (σ) of
social experience, resolution, privacy, and flexibility in various soci-
eties. p is p-value from t-test.

Share-All Share-Rules Exanna

M
R

es
ol

ut
io

n X̄ 0.58 0.58 0.60
σ 0.02 0.01 0.02
p < 0.001 < 0.001 –
∆ 1.80 3.11 –

M
So

ci
al

X̄ 0.59 0.62 0.70
σ 0.06 0.02 0.05
p < 0.001 < 0.001 –
∆ 1.80 3.11 –

M
Pr

iv
ac

y X̄ 0.00 1.34e−5 0.25
σ 0.00 2.11e−5 2.90e−3
p < 0.001 < 0.001 –
∆ ∞ 11 896.52 –

M
Fl

ex
ib

ili
ty X̄ 0.10 0.09 0.12

σ 0.01 0.01 0.03
p 0.08 < 0.01 –
∆ 1.59 2.89 –

HResolution Figure 2 compares conflict resolution in various soci-
eties. Exanna offers better conflict resolution (p < 0.001; ∆ > 0.8,
indicating a large effect) than other societies. Thus, we reject the null
hypothesis corresponding to HResolution. We observe that, in scenar-
ios where other agents do not accept the provided rationales, Exanna
agents more flexibly deviate from their own goals to resolve con-
flicts. Our results demonstrate the dynamics of agent behaviors and
the strategy of rationales.
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Figure 2: Comparing the resolution (MResolution) in various agent so-
cieties. The Exanna agent society has better resolution (Glass’ ∆ >
0.8; p < 0.001) than the baseline societies.

HSocial Experience For HSocial Experience, we measure the overall payoffs
of agents in a society. An agent’s payoff includes personal payoff
from its action and feedback from its interaction. Figure 3 com-
pares the social experience for Share-All, Share-Rules, and Exanna
agent societies. We find that Exanna yields better social experience
(p < 0.001; ∆ > 0.8, indicating a large effect)) than other soci-
eties. Specifically, Exanna agents receive better feedback from other



agents who receive their rationales. Thus, we reject the null hypoth-
esis corresponding to HSocial Experience. On closer analysis, we observe
that Exanna agents receive more negative sanctions than other soci-
eties initially but soon learn to deviate from their goals.
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Figure 3: Comparing the social experience (MSocial) in various soci-
eties. Exanna agent society has better experience (Glass’ ∆ > 0.8;
p < 0.001) than other baselines.

HPrivacy Exanna agents better retain their privacy (p < 0.001; ∆ >
0.8, indicating a large effect) compared to Share-All or Share-Rules
agents. Thus, we reject the null hypothesis corresponding to HPrivacy.

Although both the Share-Rules and Exanna societies share learned
rules as rationales, each Exanna agent aligns rationales to its values
and those of the observers, and limits the private information shared
to values that agents appraise. Our results show that a rationale stat-
ing causal attribution with minimum private information while align-
ing with individuals’ values is sufficient to explain behaviors.

HFlexibility Figure 4 compares MFlexibility for Share-All, Share-Rules,
and Exanna agent societies. We find that Exanna offers higher flex-
ibility (p < 0.01; ∆ > 0.8) than the Share-Rules society. Although
the mean flexibility in the Share-All society is lower than in the Ex-
anna society, this difference is not significant (p > 0.05). Our re-
sults demonstrate that an agent can achieve a better social experience
without sticking to only its goal.
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Figure 4: Comparing flexibility (MFlexibility) in various agent societies.
The Exanna society shows higher flexibility than baseline societies
(Glass’ ∆ > 0.8; p < 0.05 for Share-Rules but p > 0.05 for Share-
All).

Emerged Norm A norm emerges when the proportion of agents
adhering to a particular behavior surpasses a threshold. We consider
90% as the threshold [9]. We observe that Exanna promotes more
general norms than the Share-All and Share-Rules Societies. For in-
stance, the following norms emerged only in Exanna .1

{preference = ¬Wear, InteractWith =
Colleague, location=OFFICE} => Wear

{OberverAgentType = FREEDOM, InteractWith =
Colleague, location=HOSPITAL} => Wear

1 Additional emerged norms are listed in Appendix C.

6 Conclusions, Limitations, and Directions
Responsible autonomy requires that agents represent, reason with,
and communicate values in their rationales. We demonstrate via a
multiagent study how we could create agents who incorporate values
in decision making and in rationale generation and evaluation. Value-
aligned rationales offer better social experience and higher conflict
resolution. Whereas value-aligned rationales withhold partial infor-
mation, agents learn to deviate from their goals to protect their pri-
vacy. Specifically, agents who receive rejections from others become
more flexible to improve cooperation.

Assumptions and Limitations We make simplifying assumptions.
First, agents can identify other agents’ types, which indicate their val-
ues. We limit our simulation to two values (health and freedom) to
demonstrate how value importances shape behaviors. A real-world
scenario may include more intertwined values. Investigating the im-
pact of these values on decision making and exploring approaches
to elicit value importances necessitates further research. In addition,
our numerical representation captures the importance of each value,
but we do not target the complex contextual features in this work. We
focus on providing insights and methodologies to understand and as-
sess complex situations and generate informed rationales. We create
and model simplified abstractions of intricate behaviors, enabling the
analysis of complex situations.

By modeling the context as attribute-binding pairs, our approach
is adaptable to various settings. However, our approach could suffer
from state space explosion like other rule-based learning approaches.
Despite considering single actions for simplicity, we focus on study-
ing the effects of value-based explanations.

Our work contributes to developing value-aligned, trustworthy AI
by showing how value-driven rationales help resolve conflicts aris-
ing from norm deviation and thus affect the emergence of norms.
Our work complements approaches focused on eliciting values from
stakeholders [17, 18] and figuring out what are adequate reasons for
norm deviation [26] and for achieving trustworthy AI [25].

We assume the importance of contextual factors according to their
associated values. For instance, someone prioritizing health may
present factors correlating to health benefits or drawbacks. Although
our scenario is simple, the rationales are dynamically constructed
based on rule learning.

Future Directions First, incorporating the cost of privacy loss is
crucial. For instance, sharing sensitive information and sharing in-
terests with chatbots impose different costs. Thus, modeling such
costs is essential to capture how agents decide. Second, empowering
agents to make informed choices regarding disclosure. For instance,
when an agent acting on behalf of a stakeholder engages with agents
other than the healthcare provider and the stakeholder, restricting the
sharing of sensitive information may be desirable. Third, integrat-
ing rationales into the decision-making process, not just using them
as supplementary information [29]. Having rationales as part of the
decisions may increase the flexibility of an agent. Fourth, build an
ontology to associate information with values, which we model as
factors. An ontology helps to model varied factors or concepts and
their intertwined relationships. While Exanna enables value-driven
rationales and focuses on the decisions of a single agent, one future
direction is to promote values and norms in a multiagent system [24].

Reproducibility The codebase for our simulation is publicly
available [27]. The appendices provide additional details, includ-
ing hyperparameters for reproducibility, the complete set of emerged
norms, and supplementary evaluations.
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A Appendix: Procedures of XCS
The overall process of XCS includes the following sub-processes.

• Matching: A process that matches the current context and all
rules/classifiers to generate a match set. For instance, in our run-
ning example, the match set for Bella may include (1) {Risk =
Low}⇒Wear [fitness = 0.3], (2) {Risk = Low}⇒ ¬Wear [fitness
= 0.7], (3) {OtherAgentType = Health} ⇒ Wear [fitness = 0.8],
and (4){OtherAgentType = Health}⇒ ¬Wear [fitness = 0.2]. The
fitness is based on the accuracy of each rule’s reward prediction.

• Covering: A process that guarantees diversity via adding a ran-
dom classifier whose conditions match the current context. For
instance, adding {Risk = Low, Relationship = Friend}⇒ ¬Wear
to the rule set.

• Action selection: XCS selects actions with pure exploration or
pure exploitation with ϵ greedy. If not in exploration mode, this
process returns the action with the highest fitness-weighted aggre-
gation of reward.

fitnessa =

rule∑
i

fitnessi × numerosityi × predicted_rewardi (2)

where a ∈ A and A is the action space. Rules represent all rules
applied to the context and for action a. With the above example
and formula, the agent would choose not to wear a mask due to
fitness¬Wear > fitnesswear.

• Formation of action set: It includes all classifiers that propose the
chosen action based on the match set. For instance, {Risk = Low}
⇒ ¬ Wear, {OtherAgentType = Health}⇒ ¬Wear, and {Risk =
Low, Relationship = Friend}⇒ ¬Wear.

• Updating classifier parameters [30]: An agent updates the rule pa-
rameters (e.g., accuracy and fitness) based on the received payoff.
The following equation updates the predicted reward, where p is
the predicted reward, β is the learning rate, and r is the received
reward.

p← p+ β(r − p) (3)

The prediction error ε is updated with the following equation.

ε← ε+ β(|r − p| − ε) (4)

The fitness of a rule is based on its accuracy, which is in-
versely proportional to the prediction error. We update the accu-
racy kappa with the following formula.

κ =

{
1 if ε < ε0

α( ε
ε0
)−ν otherwise,

(5)

where α is the scaling factor that raises a non-accurate rule to be
close to an accurate rule. ε0 is the threshold of prediction error be-
low which the prediction error of a rule is assumed to be zero.
ν defines how accuracy is related to prediction error and aims
to help differentiate similar classifiers. For fitness calculation, we
next calculate the relative accuracy κ′ of each rule.

κ′ =
κ∑

cl∈[A] κcl
(6)

where [A] represents the corresponding action set. Finally, the fit-
ness update of a rule is as follows.

F ← F + β(κ′ − F ) (7)

where F is the fitness of a rule.

• Subsumption: A process that replaces offspring rules with more
general parent rules if it exists. Otherwise, save the offspring rules.
Specifically, a more general rule yields a minor prediction error.
For instance, if rule {Risk = Low}⇒ ¬Wear has less prediction
error than rule {Risk = Low, Relationship = Friend} ⇒ ¬Wear,
the former rule would replace the later rule and increases the nu-
merosity.

• Deletion: Each action set has the same maximum number of rules.
XCS removes the low-fitness rules.

B Appendix: Hyperparameters for Reproducibility
Table 9 lists the hyperparameters we set for our simulations. We opt
for the default configurations as in the literature [30] since our em-
phasis is on studying the impact of values in rationales and not in
fine-tuning the learning process. Learning rate refers to reinforce-
ment learning and determines the proportion an agent learns from
recent experiences. Adjusting the don’t care probability alters the
probability of including the perceived factors in the generated rule.
Increasing the accuracy threshold reduces the number of rules to
maintain. Fitness exponent and fitness falloff determine the accuracy
of the rules. Genetic algorithm threshold controls the probability of
rule exploration. Mutation probability and crossover probability de-
termine how often the mutation and crossover happen. Experience
thresholds for deletion and subsumption guarantees a specific num-
ber of times a rule has to be applied before being deleted or sub-
sumed.

The codebase for our simulation is publicly available [27].

Table 9: Hyperparameters for our settings.
Parameter Value

Population size 200.00
Learning rate 0.10
Don’t care probability 0.30
Accuracy threshold 0.01
Fitness exponent 5.00
Genetic algorithm threshold 25.00
Mutation probability 0.40
Crossover probability 0.80
Experience threshold for deletion 20.00
Experience threshold for subsumption 20.00
Fitness falloff 0.10

C Appendix: Detailed Results
Table 10 summarizes the statistical analysis of our simulations, in-
cluding additional results for actor payoffs and observer payoffs and
flexibility across different agent types. Actor payoff and observer
payoff comprise social experiences.

These results demonstrate that first, with the same context, agents
with different value importances can still evolve to different behav-
iors. Second, more adaptive norms can emerge among agents with
different values.

HSocial Experience Social experience includes actor payoff and ob-
server payoff. Figures 5 and 6 plot the payoffs of the actors who
select actions, explain their behaviors, and receive feedback from
observers in the Share-All, Share-Rules, and Exanna agent societies.
Figures 7 and 8 compare the payoff from the observer who reacts
to the actor’s behavior in the Share-All, Share-Rules, and Exanna
agent societies. The freedom-loving agents within Exanna society



Table 10: Results: Comparing mean (X̄) and standard deviation (σ)
social experience, resolution, privacy, and flexibility in various soci-
eties and agent types. p is p-value from t-test. MSocial has two sub-
classes, actor payoff and observer payoff.
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encounter more adverse feedback than other societies initially. How-
ever, some of them quickly adapt and begin to divert from their orig-
inal goals. As a result of the behavioral change made by freedom-
loving agents, there has been an enhancement in the feedback re-

ceived by health-freak agents.
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Figure 5: Comparing the actor payoff for health-freak agents in vari-
ous agent societies. Actors are agents who act and receive feedback
from others. Health-freak agents in each society have similar actor
payoffs.
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Figure 6: Comparing the actor payoff for freedom-loving agents in
various agent societies. Actors are agents who act and receive feed-
back from others. The freedom-loving agents in Exanna society have
lower actor payoffs (Glass’ ∆ > 0.5; p < 0.001) than the baseline
societies.
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Figure 7: Comparing the observer payoff for health-freak agents in
various societies. Observers give feedback based on observed behav-
iors and received rationales. The health-freak agents in Exanna soci-
ety have better observer payoffs (Glass’ ∆ > 0.8; p < 0.001) than
the baseline societies.
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Figure 8: Comparing the observer payoff for freedom-loving agents
in various societies. Observers give feedback based on observed be-
haviors and received rationales. The freedom-loving agents in Ex-
anna society have better observer payoffs (Glass’ ∆ > 0.8; p <
0.001) than the baseline societies.



HFlexibility We compare agents’ flexibility of goals as the metric of
evaluating HFlexibility. Figures 9 and 10 compare MFlexibility for health-
freak and freedom-loving agents in the Share-All, Share-Rules, and
Exanna agent societies. Referring to Figure 8, the freedom-loving
agents compromise on goals, thereby enhancing flexibility and en-
riching social experience.
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Figure 9: Comparing the flexibility for health-freak agents in various
agent societies. The health-freak agents in Exanna society exhibit
higher flexibility (Glass’ ∆ > 0.8; p < 0.001) compared to the
baseline societies.
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Figure 10: Comparing the flexibility for freedom-loving agents in var-
ious agent societies. The freedom-loving agents in Exanna society
has higher flexibility (Glass’ ∆ > 0.8; p < 0.001) than the baseline
societies.

Complete Set of Emerged Norms

Table 11 lists the norms that emerge in the simulations. An emerged
norm is a rule adopted by more than 90% of agents in one society.

D Appendix: Additional Experiments with Varying
Value Importances

Agents may not always place extreme importance to one value over
other. For instance, an agent can appreciate freedom (0.3) but cares
more about health (0.7). To investigate further, we conduct additional
experiments with a different set of value importances for freedom-
loving and health-freak agents. Table 12 lists the value importances
the freedom-loving and health-freak agents place in the additional
scenario. We run each simulation five times, with other settings iden-
tical to the original simulations.

Table 13 shows the detailed results for agent societies with value
importances as in Table 12.

HResolution Figure 11 compares conflict resolution in various soci-
eties. Exanna offers better conflict resolution than other societies.

HSocial Experience Figure 12 compares the social experience for Share-
All, Share-Rules, and Exanna agent societies. A social experience
includes personal payoff from its action and feedback from its inter-
action. Exanna yields better social experience (p < 0.01; ∆ > 0.8,
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Figure 11: Comparing the resolution (MResolution) in various agent so-
cieties with value importances as in Table 12. The Exanna agent so-
ciety has better resolution than the baseline societies.

indicating a large effect) than other societies. However, the mixed
values lead to a worse social experience. With mixed values, an ac-
tion now includes different concerns, which sometimes may contra-
dict each other. For example, an agent may appreciate freedom and
prefer not to wear a mask, but in the meantime, health concerns de-
crease its payoff on that decision.
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Figure 12: Comparing the social experience (MSocial) in various soci-
eties with value importances as in Table 12. Exanna agent society has
better experience (Glass’ ∆ > 0.8; p < 0.001) than other baselines.

HPrivacy Exanna agents better retain their privacy (p < 0.001; ∆ >
0.8, indicating a large effect) compared to Share-All or Share-Rules
agents.

HFlexibility Figure 13 compares MFlexibility for Share-All, Share-
Rules, and Exanna agent societies. The mixed values lead to higher
flexibility in agent societies than in the main simulations. Specifi-
cally, the mixed values narrow the numerical gap between each ac-
tion, decreasing the threshold for agents to change their minds.

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Time in 1,000 steps

Fl
ex

ib
ili

ty

Share-all
Share-rules

Exanna

Figure 13: Comparing flexibility (MFlexibility) in various agent societies
with value importances as in Table 12. The Exanna society shows
higher flexibility than baseline societies (Glass’ ∆ > 0.8; p < 0.05
for Share-Rules society but p > 0.05 for Share-All society).



Table 11: Emerged norms in agent societies. Common means the norms emerge in each agent society.

Society Norm

Premise Consequence

Common

Risk = NONE;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Risk = NONE;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

Risk = RISK;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Risk = RISK;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

Share-All

Risk = NONE;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Share-Rules

preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Exanna
preference = ¬WEAR;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

preference = ¬WEAR;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

OberverAgentType = FREEDOM;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

Risk = RISK;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Risk = NONE;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR



Table 12: Value importances of agents in the additional scenario. Each
society has half Freedom-loving and half Health-freak agents.

Agents: Values Freedom Health

Freedom-loving 0.7 0.3
Health-freak 0.3 0.7

Table 13: Results: Comparing mean (X̄) and standard deviation (σ)
of social experience, resolution, privacy, and flexibility in various so-
cieties in the additional scenario. p is p-value from t-test.

Share-All Share-Rules Exanna

M
R

es
ol

ut
io

n X̄ 60.79 59.50 63.23
σ 2.43 2.20 1.70
p 0.1 < 0.05 –
∆ 1.00 1.69 –

M
So

ci
al

X̄ 0.53 0.52 0.65
σ 0.06 0.05 0.03
p < 0.01 < 0.01 –
∆ 2.24 2.57 –

M
Pr

iv
ac

y X̄ 0.00 5.78e−5 0.25
σ 0.00 1.04e−4 2.60e−3
p < 0.001 < 0.001 –
∆ ∞ 2414.62 –

M
Fl

ex
ib

ili
ty X̄ 0.22 0.20 0.25

σ 0.03 0.02 0.02
p < 0.05 < 0.01 –
∆ 1.29 2.02 –


