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Abstract
To interact effectively, agents must enter into com-
mitments. What should an agent do when these
commitments conflict? We describe Coco, an ap-
proach for reasoning about which specific commit-
ments apply to specific parties in light of general
types of commitments, specific circumstances, and
dominance relations among specific commitments.
Coco adapts answer-set programming to identify a
maximal set of nondominated commitments. It pro-
vides a modeling language and tool geared to sup-
port practical applications.

1 Introduction
Major applications of information technology presuppose an
ability to reason about interactions among autonomous par-
ties. We characterize the expectations that parties have of one
another using a notion of commitment in which general com-
mitment schemata produce specific commitment instances
when applied to specific parties in specific situations. In some
situations, commitment instances demand conflicting condi-
tions or assignments of resources. We characterize the means
for resolving such conflicts in terms of situation-dependent
dominance relations among commitments.

Example 1. Alice, a child, takes ill. Society expects Alice’s
guardian, Bob, to take her immediately to her pediatrician,
Carol, provided Alice requires immediate medical attention.
Meanwhile, Bob’s employer, Steve, expects him to work dur-
ing business hours. Bob disregards his employer’s expecta-
tion in light of the medical emergency involving his ward. �

Following Singh [2013], we use the term principal to mean
an autonomous party (person, agent, organization, or polity)
that can commit to others and be committed to by others. Ex-
ample 1 includes as principals the people named and Society.

Bob is committed to Steve to stay at work during work
hours, and to Society to take Alice to Carol if Alice becomes
sick. If someday Alice falls sick during work hours, instances
of the above schemata arising on that day conflict because
Bob cannot be at two places at once. If that is all we know,
there is no clear resolution. But the resolution is clear if it is
more important for Bob to bring Alice to Carol when she is
sick than to go to work.

Problem. The problem we address is how to resolve com-
mitment conflicts that are resolvable through runtime reason-
ing about situation-dependent dominance among instances.

Novelty. Commitments, norms, and compliance have been
extensively studied. Yet, despite many advances, previous
work has not tackled the stated problem. Most treatments of
commitments and norms do not represent dominance. Yolum
and Singh [2004] and Alberti et al. [2006] compute feasible
execution paths for agents or verify compliance. Dignum
et al. [2005] define a CTL variant and present a formal-
ism of deadlines to determine norm compliance based on
whether agents bring about specified states before the dead-
line. Alechina et al. [2013] (hereinafter, ADL) apply CTL
and ATL to reason about normative update. They incorporate
deadlines and determine compliance via a notion similar to
Dignum et al.’s. ADL’s framework sanctions violators. Al-
though Dignum et al. and ADL consider time, they do not
consider dominance between norms. Knobbout and Dastani
[2012] propose a logical framework by extending ATL to rea-
son about agents’ abilities under norm-compliance assump-
tions, but lack a notion of dominance.

Vasconcelos et al. [2009] and Governatori [2007] address
conflicts between norms as a design problem with a view to
specifying schemata (in our terminology) that avoid potential
conflicts. In contrast, Coco aims to resolve conflicts as they
arise between instances. This has the benefit of only having to
deal with conflicts that occur, not those that might occur. The
contrary-to-duty literature, e.g., [Prakken and Sergot, 1996],
deals with secondary obligations that come into effect when
the primary obligations are violated.

Boella and van der Torre [2008] provide a mechanism for
expressing which norm supersedes which other in which situ-
ation, but their work does not address automatic runtime iden-
tification of nonsuperceded instances.

Some heuristic approaches are promising. Oren et al.
[2008] propose an argumentation-based heuristic to deter-
mine which norms to comply with when norms conflict. They
build conflict graphs with norms and conflicts as nodes and
edges. Oren et al. use agent preferences to prune norms in
conflict graphs, and permanently drop nonpreferred norms.
Oren et al.’s work ignores temporal aspects. In contrast, Coco
deals with commitments at runtime.

Criado et al. [2015] propose an economics-based approach



that resolves conflicts among instances of norms by optimiza-
tion using agent objectives and preferences. The optimization
function, built into the conflict-resolution algorithm, consid-
ers the coherence of the available cognitive and normative el-
ements. In contrast, Coco uses explicit rules to specify domi-
nance among commitment instances. These rules enable trac-
ing and interpretation of conflict resolutions in terms of agent
objectives and preferences.

Contributions. Coco provides representations for commit-
ments and dominance, as well as tractable decision proce-
dures for determining compliance of actions with commit-
ment instances. Coco (1) applies answer-set programming
(ASP) [Gelfond, 2008; Gebser et al., 2014] to identify non-
dominated commitments given knowledge of the world and
of the specific situation, and (2) applies ADL’s techniques
to determine compliance of agent actions with nondominated
commitment instances. This paper also provides theoretical
results on the correctness and tractability of the problems of
(3) determining maximal sets of nondominated commitment
instances, and (4) determining liveness and safety of a system
of commitments.

2 Specifying Commitments
A commitment here involves two principals, with the creditor
principal committed in some way to the debtor principal. A
commitment schema (dbt, crd, φ, ψ, td) indicates that debtor
dbt is committed to creditor crd so that if the antecedent con-
dition φ holds, then the consequent condition ψ should hold
at some point within the deadline duration td, meaning that
ψ should hold at some time within time units after φ begins
to hold.

We write (s, dbtI, crdI, ti) to mean a commitment in-
stance in which s is the commitment schema that the instance
instantiates, dbtI and crdI are the specific debtor and credi-
tor (i.e., the principals who fill the corresponding roles in the
schema), and ti is the time at which the instance becomes
detached, i.e., at which the schema’s antecedent for the par-
ticular debtor and creditor becomes true.

Listing 1 formalizes a commitment schema, gCom, com-
mitting guardians to take care of their charges, as open (im-
plicitly universally quantified) FOL formulas. We use capi-
talized words to represent variables, and lowercase for con-
stants. Statements 2 and 3 mean that if G fills the guardian
role for charge C at T , then G is the debtor of the gCom in-
stance, and C is the creditor. Statements 4 and 5 state the
antecedent and consequent, respectively. The antecedent is
that C falls sick, and the consequent is thatG brings C to C’s
pediatrician Ped . Line 6 states that the deadline duration is 3
time units.

Similarly, the schema wCom defined in Listing 2 commits
employees to be at work during work hours. If employeeEe’s
employer is Er at time T , then Ee is the debtor and Er is the
creditor of the wCom instance. The antecedent of wCom is
that time T is a work hour for employee Ee at employer Er,
and the consequent is Ee is at work for Er at time T . The
deadline duration is 0 time units.

1 schema(gCom)
2 guardianR(C ,G,T )→ dbt(gCom,G,T )
3 guardianR(C ,G,T )→ crd(gCom,C ,T )
4 [sick(C ,T ) ∧ crd(gCom,C ,T )]→ ant(gCom,T )
5 [bring(G,C ,Ped ,T ) ∧ pedR(C ,Ped ,T )

∧dbt(gCom,G,T ) ∧ crd(gCom,C ,T )]
→ con(gCom,T )

6 dDuration(gCom, 3 )

Listing 1: Definition of the gCom schema

1 schema(wCom)
2 employer(Ee,Er ,T )→ dbt(wCom,Ee,T )
3 guardianR(C ,G,T )→ crd(wCom,Er ,T )
4 [dbt(gCom,Ee,T ) ∧ crd(wCom,Er ,T )

∧workhour(Ee,Er ,T )]→ ant(wCom,T )
5 [dbt(wCom,Ee,T ) ∧ crd(wCom,Er ,T )

∧atWork(Ee,Er ,T )]→ con(wCom,T )
6 dDuration(wCom, 0 )

Listing 2: Definition of the wCom schema

We treat compliance and conflict with respect to instances.
Thus, if Alice falls sick at time instant T , an instance of gCom
is instantiated and becomes detached at T . If Bob takes Al-
ice to her pediatrician within three hours, then the instance is
satisfied. Otherwise, the instance is violated.

3 Formal Language and Model
Coco’s formal language is the function-free first-order predi-
cate calculus with a distinguished set of predicates and con-
stants. To describe facts of the world, it contains (1) constants
naming all principals in lowercase, such as alice and bob, dis-
tinguished times, such as time 10, within a finite interval, and
durations; (2) predicates naming roles of organizations, such
as guardianR, indicated by names ending in R; (3) predi-
cates naming conditions of interest, such as workhour ; (4)
predicates naming actions, such as bring ; and (5) predicates
< (precedes), = (equals), and≤ (precedes or equals) for com-
paring times.

To describe commitments, the language contains (1)
constants naming schemata; and (2) terms naming in-
stances of schemata. For example, the ground term
instance(gCom, bob, alice, 10), which we abbreviate to
gComInst in the following, names an instance of gCom with
debtor bob and creditor alice detached at time 10. Simi-
larly, the term instance(wCom, bob, steve, 11), abbreviated
henceforth as wComInst , names an instance of wCom .

The methods described in Section 4.2 for testing liveness
and safety require a function-free language. When forming
instances, Coco asserts statements that identify the compo-
nents of an instance term, as illustrated for gComInst in List-
ing 3.

1 [sInst(gComInst)∧isInstOf (gComInst , gCom)]
→ crdI (gComInst , alice)

2 [sInst(gComInst)∧isInstOf (gComInst , gCom)]
→ dbtI (gComInst , bob)

3 dDurationI (gComInst , 3 )

Listing 3: Some properties of gComInst



The antecedent and consequent of an instance, omitted in
the listing, are formed by substituting the names of specific
debtor and creditor for the corresponding variables in the
schema.

Table 1 lists the main predicates of schemata and instances
of Coco. S is a refers to a schema, and Si refers to an in-
stance. schema and sInst specify the corresponding types;
isInstOf identifies the schema of an instance; and antI and
conI state that instance antecedents and consequents hold at
specific times.

Schema predicates
schema(S)
dbt(S, P, T )
crd(S, P, T )

ant(S, T )
con(S, T )
dDuration(S, T )

Instance predicates
sInst(Si)
isInstOf (Si, S)
dbtI (Si, P )
crdI (Si, P )
antI (Si, T )
conI (Si, T )
dDurationI (Si, T )
detached(Si, T )
sameDbtI
sameCrdI

violated(Si, T )
satisfied(Si, T )
becomesDetached(Si, T )
becomesViolated(Si, T )
becomesSat(Si, T )
conflicting(Si1, Si2, T )
dominates(Si1, Si2, T )
dominated(Si, T )
conINotHold(Si, T1, T )

Table 1: Main predicates of schemata and instances.

The satisfaction of an instance is formalized as
becomesSat(Si, T ), which means that T is the first time at
which the consequent of Si holds, provided this happens
before the deadline; satisfied is true of the instance from that
time on. The violation of an instance is realized in a similar
way. Specifically, the statement becomesViolated(Si, T )
holds at T when Si is detached, but not dominated, and
its consequent does not hold within the deadline. The def-
initions for becomesSat and becomesViolated are provided
in Listing 4. The predicate conINotHold(Si, T1, T ) says
that the consequent of Si is not true between times T1 and
T . The two utility predicates difference(T1, T2, T ) and
addition(T1, T2, T

′) state that the difference and sum of T1
and T2 are T and T ′, respectively.

1 [detached(Si ,T ′) ∧ conI (Si ,T ) ∧ difference(T ,T ′, 1 )]
→ becomesSat(Si ,T )

2 [becomesDetached(Si ,T1 ) ∧ dDurationI (Si ,T2 )
∧addition(T1 ,T2 ,T ) ∧ conINotHold(Si ,T1 ,T )
∧¬dominated(Si ,T )]→ becomesViolated(Si ,T )

Listing 4: Satisfaction and violation relations

We define a set of instances as conflicting if the set of
their consequents cannot hold simultaneously. Whether a
consequent can be true when another consequent is true
depends on the domain knowledge of specific scenarios.
Section 5 formalizes knowledge showing how gComInst
and wComInst conflict in our example. Listing 5 defines
conflicting(Si1, Si2, T ) symmetrically as holding at time T
in case Si1 and Si2 are detached but their consequents can-
not both hold at T .

1 [detached(Si1 ,T ) ∧ detached(Si2 ,T )
∧¬(conI (Si1 ,T )↔ conI (Si2 ,T ))]
→ conflicting(Si1 ,Si2 ,T )

Listing 5: The conflicting relation

In Example 1, Bob is required to be at his workplace dur-
ing work hours and at Carol’s office with Alice when Alice
is sick. If Alice gets sick during Bob’s work hours, both
gComInst and wComInst detach and require Bob to be in two
places at the same time. The consequent conditions conflict
even when Alice is not sick, but only matter for detached in-
stances; only then may such conflicts cause a commitment
violation.

We resolve such conflicts by employing dominance rela-
tions, so that satisfaction of a more dominant instance vitiates
violation of a less dominant instance. Thus, a principal can
comply with one instance while violating another, and still
remain in compliance with the entire set of instances. We re-
quire that the relation dominates (more dominant than) be a
strict partial order, that is, transitive and irreflexive. A par-
tial order is appropriate because changing commitments and
unforeseen conflicts may make a total ordering infeasible; a
partial order can suffice to resolve conflicts that do arise. We
select from the set of all detached instances a maximal subset
of nondominated instances, that is, a subset of detached in-
stances none of which is less dominant than some conflicting
instance in the same set.

Listing 6 formalizes simple dominance of gCom over
wCom. The statement says that a detached instance of gCom
dominates a detached instance of wCom if they have the same
debtor, which is indicated by the utility predicate sameDbtI .
Section 5.2 gives examples in which this dominance is nar-
rowed by requiring additional conditions.

1 [isInstOf (Si1 , gCom) ∧ isInstOf (Si2 ,wCom)
∧detached(Si1 ,T ) ∧ detached(Si2 ,T )
∧sameDbtI (Si1 ,Si2 )]→ dominates(Si1 ,Si2 ,T )

Listing 6: The guardian dominance relation

Listing 7 defines dominated(Si1, T ) to hold at T in case
a detached instance Si1 is in conflict with another detached,
nondominated instance Si2 that dominates it at T .

1 [dominates(Si2 ,Si1 ,T ) ∧ conflicting(Si1 ,Si2 ,T )
∧¬dominated(Si2 ,T ) ∧ detached(Si1 ,T )
∧detached(Si2 ,T )]→ dominated(Si1 ,T )

Listing 7: The dominated relation

4 Decision Procedures, Theoretical Results
Given a Coco snapshot of the current enactment, specifically
the current state of the knowledge on the detached instances
and the appropriate background knowledge, we test whether
the snapshot admits an unambiguous nondominated set of
currently detached instances, which we call a nondominated
set. If it does, we obtain a maximal such set, D, and then
proceed to check the liveness and safety properties of D.

In Ex. 1, the set D would contain (i) a nondominated in-
stance for Bob taking Alice to the hospital, and (ii) a domi-



nated instance for Bob having to be at work at the same time.

4.1 Testing for Existence of Nondominated Set
We test enactments for admission of nondominated sets of
detached instances by obtaining stable models under ASP se-
mantics, e.g., [Gelfond, 2008], and by interpreting the outputs
in our setting. Intuitively, we take a snapshot S as input, and
return a stable model of S under ASP semantics, that is, all
the facts implied by S under the semantics that do not become
negated under inferences using the rules of S.

Definition 1. For a noncontradictory snapshot S of knowl-
edge about an enactment, we call a set D of detached in-
stances in S a nondominated set of detached instances when-
ever for each instance nii in D, the following holds:

(a) It is not possible to infer (under ASP) from S the fact
dominates(nij , nii, t) for any detached instance nij in
S and time t at which nii and nij are in conflict; and

(b) It is not possible to infer from S the fact that nii conflicts
with any other detached instance in D at time t.

We call any such set D saturated if it includes each de-
tached instance in S that satisfies condition (a) above.

The intuition for saturated sets of detached instances is that
each such set witnesses that for each pair in S of detached
instances nii and nij that are in conflict at time t, S entails
the fact of dominance at time t of either nii by nij or vice
versa. That is, our dominance knowledge is complete in this
case for all the detached instances in snapshot S.

Given a snapshot S, with each stable model M of S we
associate the M-nondominated set of detached instances in
S, written D(S,M), as follows: D(S,M) is a maximal set
of detached instances nii ∈ S such that

(1) M does not include the fact dominates(nij , nii, t) for
any detached instance nij in S at time t, and

(2) It is not possible to infer from S the fact that nii conflicts
with any other detached instance in D(S,M).

The set D(S,M) may or may not be saturated, depending
on the degree of completeness of the dominance knowledge
that can be inferred from the snapshot S. (For example, if
S entails the fact of conflict of two instances, nii and nij ,
but does not entail any dominance knowledge, then two sets
D(S,M) = {nii} and D(S,M′) = {nij} may exist, with
neither set being saturated or saturable.)

We further say that two stable modelsM andM′ of S are
nondominance identical if and only if their associated sets
D(S,M) and D(S,M′) are the same.

Theorem 1. Given a noncontradictory snapshot S: At least
one stable model for S exists and is nondominance identical
to all stable models for S if and only if there exists for S a
saturated nondominated set of detached instances in S.

For instance, in Example 1 there exists a single stable
model with instances (i) and (ii) as in the beginning of this
section, provided S captures that gCom dominates wCom
when Alice is sick. Otherwise, ASP would compute two or
more stable models, an indication that S does not admit a
saturated nondominated set of detached instances in S.

Proof. (sketch) We begin by proving the existence claim of
Theorem 1. The only if part is immediate from the definitions.

For the if part, suppose that there exists for S a saturated
nondominated set, D, of detached instances in S. We show
that in this case there exists at least one stable model,M, for
the snapshot S, such that D is the D(S,M) associated with
M. Indeed, by definition ofD, for each element nii ofD one
cannot infer from S that nii is in conflict with another de-
tached instance that dominates it. Further, D includes all the
instances in S that satisfy the condition (a) in Definition 1.
Thus, D is a unique and maximal set w.r.t. the detached in-
stances entailed from S. We now obtain the set J of all the
facts implied from S; the setM = S ∪ J is a stable model
of S by construction. It is immediate from the definitions that
D is the set D(S,M).

We now prove by contradiction that under the assumptions
of the previous paragraph, all the stable models of the given
snapshot S are nondominance identical. Indeed, assume there
exists a stable model,M′, of the snapshot S, such that the set
D(S,M′) is not identical to the saturated set D as defined
above. By definition of D, the only way this can happen is
when D(S,M′) is a proper subset of D. (Recall that the
snapshot S is noncontradictory.) This means that for at least
one detached instance nii ∈ S, such that nii /∈ D(S,M′),
one cannot derive from S that nii is dominated by another
detached instance nij ∈ S, at time instant t. At the same
time, nii is not in conflict with any element of D(S,M′),
as witnessed by the existence of the set D. It follows that
the set D(S,M′) is not maximal as required by definition of
associated set forM′, a contradiction.

Theorem 2 is immediate from Theorem 1.

Theorem 2. Given a noncontradictory snapshot S: The
asymptotic runtime complexity of (a) determining whether a
saturated nondominated set of detached instances in S exists
and (in case it exists) of (b) producing such a set coincides
with the runtime complexity of finding the stable models of S.

4.2 Liveness and Safety Checking
Suppose that for a snapshot S, there exists a saturated non-
dominated set D of detached instances in S. Then it fol-
lows from Theorems 1 and 2 that it is decidable and tractable
to construct D using a standard ASP solver. Suppose that
we further want to check whether certain liveness and safety
properties hold in S in presence of D.

Following ADL, we understand liveness as capturing that
desirable states (from the designer’s point of view) are possi-
ble w.r.t. the current enactment and can be achieved without
an agent incurring sanctions, and safety as capturing that it
is impossible for an agent to reach a state where some unde-
sirable property holds without incurring some sanctions. Our
approach for checking liveness and safety properties is by re-
duction to ADL’s approach, as follows.

Given a liveness or safety property, ϕ, in the context of a
snapshot S and of its nondominated set D, we translate each
ofϕ, S, andD into propositions by using separate proposition
names for all possible instantiations of the predicates in ϕ, S,
and D with the constants in the given universe of discourse.
(We assume there is a constant upper bound on the arity of



the predicates and rules in S , ϕ, and D. That is, we do not
consider the arity of the facts or rules in S, ϕ, or D a variable
part of the input.) We then treat the result of this process,
S2, as an input to ADL’s approach, and treat the output of the
latter approach as follows.
Theorem 3. Let S2 be a knowledge base as described above
and including a suitable transformation of a liveness or safety
property, ϕ, on a snapshot S that admits a saturated non-
dominated setD. Then ADL’s algorithm [2013, proof of their
Theorem 1], when given S2 as its input, outputs the answer
“yes” (respectively, “no”) if and only if the property ϕ holds
(respectively, does not hold) on S in presence of D.

Proof. ADL express liveness and safety properties in CTLS,
a sanctions-based extension of CTL [Clarke et al., 1986].
ADL check a liveness or safety property ϕ against a set N
of conditional norms and a transition system M via model
checking. (Due to the page limit, we refer the reader to
Alechina et al. [2013] for the details.) Model checking takes
as inputs a transition system M with initial state s, a finite set
of conditional norms N , and a formula ϕ of CTLS. It returns
true if MN , s |= ψ, and returns false otherwise. Here, MN

is a normative update of M with N , with the meaning of an
expansion of M into all possible complete paths (runs) and
with all the norms in N enforced on all the runs.

It is straightforward to verify that (1) the transformation of
S, ϕ, and D into S2 described above results in S2 that is a
correct “propositional expansion” of the inputs, and of size
bounded by a polynomial in the size of the inputs, and that
(2) the result S2 of the translation constitutes a valid input to
ADL’s checkers. As a result, ADL’s checkers provide correct
answers for S, ϕ, and D via providing correct answers for S2
and via S2 being their correct “propositional expansion.”

By the results of Alechina et al. [2013], the model-
checking problem for a normative update of a transition sys-
tem is PSPACE complete; the proofs are constructive and thus
provide a PSPACE-complete algorithm for verifying whether
a given liveness or safety property holds against a set of con-
ditional norms and a transition system.

Consequently, checking liveness and safety properties of
enactments that admit saturated nondominated sets of in-
stances is decidable with asymptotic runtime complexity of
PSPACE, equal to that of ADL’s approach.

5 Demonstration
We now demonstrate the Coco workflow and formalize con-
flict detection using Example 1. We then show how to add
constraints to dominance relations in Section 5.2.

5.1 Formalizing the Example
Figure 1 illustrates Example 1, omitting time instants before
10 and after 13 for brevity. Each node represents the state
update of an instance. One time instant contains multiple
nodes if there are state updates of multiple instances at that
time. The line above a node is the debtor’s action, repre-
sented as a predicate, that caused the state update. For exam-
ple, Alice becomes sick at time 10, which causes detachment
of gComInst. Then at time 11, the middle node (labeled 11)

indicates detachment of wComInst. Node 11b says wComInst
becomes satisfied if Bob is at work at 11. Similarly, 11a says
gComInst becomes satisfied if Bob brings Alice to her pedia-
trician at time 11. A conflict occurs at time 11 because Bob
cannot be at two places at once, assuming Carol’s office is at
hospitalLoc, Bob’s work is at companyLoc, and the two are
distinct. Finally, node 13 indicates that with the conflict de-
tection and dominance relation, gComInst would not become
violated even if Bob did not bring about the consequent.

10

11

12

13

11b 11a

workhour
(bob, steve, 11)

bring
(bob, alice, carol, 11)

atWork
(bob, steve,11)

sick(alice, 10)

becomesDetached(
instance(wCom
(bob,steve,11),11)

becomesSat(
instance(wCom
(bob,steve,11),11)

becomesSat(
instance(gCom
(bob,alice,10),11)

becomesDetached(
instance(gCom
(bob,alice,10),10)

12b

13b

becomesViolated(
instance(
gCom
(bob,alice,10),13)

dominates(
instance(wCom
(bob,steve,11),11)

dominates
conflicts

Figure 1: A healthcare scenario (see Example 1)

In summary, Coco finds that gComInst dominates
wComInst at time 11; gComInst is satisfied at 11 (when Bob
brings Alice to Carol). The execution demonstrates how, in
the presence of dominance relations, an enactment can com-
ply with a set of instances without complying with each of
them.

Consider the scenario where, instead of bringing Alice to
the hospital when she is sick, Bob chooses to work, illus-
trated in Figure 1 by the path 10→11b→12b→13b. Coco
produces an output similar to the previous case but finds that
gComInst is violated at time 13 and wComInst is satisfied at
11. The nondominated instances remain violated if their con-
sequents do not hold within the deadline, whereas a domi-
nated instance may be satisfied.

Listing 8 formalizes the conflict detection for this enact-
ment. Statement 1 says the same principal cannot be at two
different locations at the same time. Statements 2–4 im-
ply that wComInst’s consequent cannot be true at T when
gComInst’s consequent holds at T . Lines 5–7 handle the con-
verse. Thus, gComInst and wComInst instances conflict and
the latter is dominated.



1 [atLocation(P ,L1 ,T ) ∧ (L1 6= L2 )]
→ ¬atLocation(P ,L2 ,T )

2 [isInstOf (Si , gCom) ∧ conI (Si ,T ) ∧ dbtI (Si ,G)]
→ atLocation(G, hospitalLoc,T )

3 [employerR(Ee,Er ,T )
∧¬atLocation(Ee, companyLoc,T )]
→ ¬atWork(Ee,Er ,T )

4 [isInstOf (Si ,wCom) ∧ dbtI (Si ,Ee) ∧ crdI (Si ,Er)
∧¬atWork(Ee,Er ,T )]→ ¬conI (Si ,T )

5 [isInstOf (Si ,wCom) ∧ conI (Si ,T ) ∧ dbtI (Si ,Ee)
∧crdI (Si ,Er)]→ atLocation(Ee, company ,T )

6 [guardianR(C ,G,T ) ∧ pedR(C ,Ped ,T )
∧¬atLocation(G, hospitalLoc,T )]
→ ¬bring(G,C ,Ped ,T )

7 [isInstOf (Si , gCom) ∧ dbtI (Si ,G) ∧ crdI (Si ,C )
∧pedR(C ,Ped ,T ) ∧ ¬bring(G,C ,Ped ,T )]
→ ¬conI (Si ,T )

Listing 8: Conflict-detection knowledge for Example 1

5.2 Additional Dominance Relations
Dominance relations can be specified incrementally to cover
conflicts between different types of commitments in differ-
ent circumstances. For example, suppose Bob’s wife, Amy,
is also available and responsible for Alice, and consider the
following modified scenario.

Example 2. Alice, Bob and Amy are all at home and Bob
needs to go to work. Alice suddenly takes ill and Bob would
be late for work if he takes Alice to her pediatrician. Mean-
while, Amy is taking a day off and available for taking care of
Alice. So Bob goes to work and Amy immediately takes Alice
to the hospital. �

Formalizing Example 2 involves another instance of
gCom, namely instance(gCom, amy, alice, 10), abbreviated
gComInst2. We want gComInst2 to dominate gComInst be-
cause Amy is currently available but Bob is not. We formalize
this availability-dependent dominance relation in Listing 9.
Specifically, a detached instance Si1 of gCom dominates an-
other detached instance Si2 of gCom if they have the same
creditor, Alice in this case, but different debtors, Bob and
Amy in this case, and Si1’s debtor is available while Si2’s
is not.

1 [isInstOf (Si1 , gCom) ∧ isInstOf (Si2 , gCom)
∧detached(Si1 ,T ) ∧ detached(Si2 ,T )
∧sameCrdI (Si1 ,Si2 ) ∧ dbtI (Si1 ,G1 )
∧dbtI (Si2 ,G2 ) ∧ (G1 6= G2)
∧available(G1 ,T ) ∧ ¬available(G2 ,T )]
→ dominates(Si1 ,Si2 ,T )

Listing 9: The availability dominance relation

In Example 2, gComInst2 is nondominated. How-
ever, gComInst2 dominates and conflicts with gComInst,
so gComInst is dominated. As before, gComInst domi-
nates wComInst, so by transitivity, gComInst2 dominates
wComInst. Although gComInst still conflicts with wComInst,
wComInst is nondominated because gComInst is dominated
and because it does not conflict with gComInst2.

Consider the situation where neither Bob nor Amy is avail-
able, then we could augment the dominance relation given
in Listing 9 to say that whoever is closer to Alice should
take her to the hospital. Listing 10 formalizes this using the
dist(G,C,D,T) predicate to say the distance between G and C
at time T is D.

1 [isInstOf (Si1 , gCom) ∧ isInstOf (Si2 , gCom)
∧detached(Si1 ,T ) ∧ detached(Si2 ,T )
∧sameCrdI (Si1 ,Si2 ) ∧ crdI (Si1 ,C )
∧dbtI (Si1 ,G1 )∧dbtI (Si2 ,G2 ) ∧ (G1 6= G2)
∧¬available(G1, T ) ∧ ¬available(G2, T )
∧dist(G1 ,C ,D1 ,T ) ∧ dist(G2 ,C ,D2 ,T )
∧(D1 ≤ D2)]→ dominates(Si1 ,Si2 ,T )

Listing 10: Distance Dominance Relation

6 Discussion
Coco provides a flexible formalization of instances, including
reasoning about conflicts and dominance. It employs ASP
to compute maximal consistent sets of instances and adapts
ADL’s techniques to tackle compliance, liveness, and safety.
Coco supports identifying and dealing with conflicts between
commitments arising at runtime.

Additional related work. Besides the works discussed in
Section 1, works on policy reasoning and software engineer-
ing are relevant. Marinovic et al. [2014] formalize “break-
glass” reasoning in which a user can override access control
based on urgency but thereby becomes subject to additional
monitoring (e.g., CCTV) and post facto justification require-
ments. Marinovic et al. adopt multivalued reasoning to deter-
mine a suitable decision for the access control system.

Ingolfo et al. [2014] propose Nòmos 3, a goal-based frame-
work to determine compliance of roles and requirements.
They consider two norms (rights and duties) and propose two
roles (social and legal). When a social role has to achieve
a goal, the corresponding legal role must be compliant, i.e.,
it has to satisfy required preconditions and postconditions of
norms. Their distinction of roles is not substantial. Ingolfo et
al. provide a graphical modeling language for compliance, but
it is limited and does not support defining dominance among
norms. Ghanavati et al. [2014] provide heuristics for reading
textual regulations to determine their meanings and potential
dominance relations. They do not deal with instances and do
not provide a formal approach.

Directions. Important directions include supporting dom-
inance based on (1) organizational context, as in the legal
principle of Lex Superior, which says that the decisions of
a higher court take precedence over those of a lower court,
and (2) temporal recency, as in the legal principle of Lex Pos-
terior, which says that more recent decisions take precedence
over earlier ones. Another direction is to provide methods
in handling a cycle of dominance relations and in applying
priority to a set of dominance relations.
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