
Feature Toggles as Code: Heuristics and Metrics for
Structuring Feature Toggles

Rezvan Mahdavi-Hezaveha,∗, Nirav Ajmerib, Laurie Williamsa

aNorth Carolina State University, Raleigh, North Carolina
bUniversity of Bristol, Bristol, United Kingdom

Abstract

Context: Using feature toggles is a technique to turn a feature either on or

off in program code by checking the value of a variable in a conditional state-

ment. This technique is increasingly used by software practitioners to support

continuous integration and continuous delivery (CI/CD). However, using fea-

ture toggles may increase code complexity, create dead code, and decrease the

quality of a codebase.

Objective: The goal of this research is to aid software practitioners in

structuring feature toggles in the codebase by proposing and evaluating a set of

heuristics and corresponding complexity, comprehensibility, and maintainability

metrics based upon an empirical study of open source repositories.

Method: We identified 80 GitHub repositories that use feature toggles in

their development cycle. We conducted a qualitative analysis using 60 of the

80 repositories to identify heuristics and metrics. Then, we conducted a survey

of practitioners of 80 repositories to obtain their feedback that the proposed

heuristics can be used to guide the structure of feature toggles and to reduce

technical debt. We also conducted a case study of the all 80 repositories to

analyze relations between heuristics and metrics.

Results: From the qualitative analysis, we proposed 7 heuristics to guide

structuring feature toggles and identified 12 metrics to support the principles

∗Corresponding author
Email address: rmahdav@ncsu.edu (Rezvan Mahdavi-Hezaveh)

Preprint submitted to Information and Software Technology April 20, 2022

embodied in the heuristics. Our survey result shows that practitioners agree

that managing feature toggles is difficult, and using identified heuristics can

reduce technical debt. Based on our case study, we find a relationship between

the adoption of heuristics and the values of metrics.

Conclusions: Our results support that practitioners should have self-descriptive

feature toggles, use feature toggles sparingly, avoid duplicate code in using fea-

ture toggles, and ensure complete removal of a feature toggle.

Keywords: feature toggle, continuous integration, continuous development,

open source repository, heuristic, metric

1. Introduction

Using feature toggles is a technique to either turn a feature on or off in

program code by checking the value of a variable in a conditional statement.

Feature toggles allow developers to integrate and test a new feature incremen-

tally even if the feature is not ready to be deployed [1]. This technique is often5

used for continuous delivery (CD) and continuous integration (CI) in software

development [1, 2]. Developers can also use feature toggles for other purposes,

such as to perform experiments or to gradually roll out updates. Using feature

toggles may impact the quality of the codebase. For instance, adding a toggle

adds more decision points to the code, resulting in increased complexity. This in-10

creased complexity drives the need to remove feature toggles when their purpose

is fulfilled. In 2012, developers in Knight Capital Group, an American global

financial services firm, updated their algorithmic router which accidentally re-

purposed a feature toggle and activated dead code which had been unused for 8

years. Knight Capital Group lost nearly $400 million in 45 minutes, causing the15

group to go bankrupt [3]. This example shows the importance of structuring

feature toggles correctly.

Developers may follow certain structures to incorporate feature toggles in

their code. As an example, checking the value of a feature toggle could be done

through different structures. One structure is to check the value of all feature20

2

toggles through one method. As an alternative, each feature toggle could have

its own specific method to check the value of that toggle. So, even a simple

task of checking the value of feature toggles could be structured in more than

one way. Feature toggles structured incorrectly could result in technical debt

[4, 5]. Thus, arises a need for guidelines on how to structure and manage tog-25

gles. The goal of this research is to aid software practitioners in structuring

feature toggles in the codebase by proposing and evaluating a set of heuristics

and corresponding complexity, comprehensibility, and maintainability metrics

based upon an empirical study of open source repositories. Software practition-

ers prefer to learn through the experiences of other practitioners [6]. To address30

the goal, we systematically study feature toggle usage in open-source software

repositories, and (1) develop heuristics, (FT-heuristics), to guide the structur-

ing of feature toggles; and (2) propose metrics, (FT-metrics), to support the

heuristics. Accordingly, we state the following research questions:

RQH (heuristics): What heuristics can be used to guide the structuring of35

feature toggles in a codebase?

RQM (metrics): What metrics can be used to measure the effect of incorpo-

rating proposed heuristics in the codebase?

RQS (survey and case study): To what extent do the practitioners incor-

porate the heuristics, and how the metrics are related to those heuristics?40

We answer RQM and RQH iteratively and concurrently. To address the

heuristics research question (RQH), we analyze the code base of 60 GitHub

repositories and develop heuristics for incorporating feature toggles in the code.

To address the metrics research question (RQM), we analyze the same 60 GitHub

repositories to identify metrics that support heuristics. Specifically, we analyze45

files in these repositories, study existing design metrics, such as CK metrics [7]

and software product line variability metrics [8], and select the metrics that can

be related to feature toggles. To address the third research question (RQS), we

conduct a survey of practitioners in the 80 repositories in our dataset. Through

the survey, we identify how difficult is it for practitioners to manage feature50

toggles, and to what extent they agree that FT-heuristics can be used to guide

3

practitioners on how they can structure and use feature toggles so as to reduce

technical debt. We also conduct a case study on the same 60 GitHub repositories

and additional 20 GitHub repositories (all 80 repositories in our dataset) based

on the adoption of FT-heuristics and FT-metrics to analyze the relation between55

FT-heuristics and FT-metrics statistically.

We summarize the contributions of this paper:

(1) Development of 7 FT-heuristics to guide the structuring of feature toggles;

(2) Identification of 12 FT-metrics to support the principles embodied in the

FT-heuristics;60

(3) A case study analyzing practitioner adherence to the FT-heuristics in open

source software, and the relation of FT-heuristics with FT-metrics; and

(4) A database of GitHub repositories that use feature toggles in their develop-

ment cycle, and examples of good and bad structuring of the feature toggles

in these repositories.65

Organization. Section 2 provides a background of feature toggles and describes

related works. Section 3 explains our research method. Section 4 describes FT-

heuristics with examples. Section 5 details FT-metrics. Section 6 presents the

results of the case study and the practitioner survey. Section 7 discusses the

limitations of our study. Section 8 concludes with lessons learned and future70

directions.

2. Background and Related Works

This section describes the background and relevant related work.

2.1. Background

Rapidly releasing valuable software leads companies to use CI and CD to75

make development cycles shorter. CI is a practice to integrate, and automati-

cally build and test software changes in a source repository after each commit

4

[9] in short intervals. CD is a practice to keep software in a state such that

it can be released to production at any time [10]. Using feature toggles is a

technique used by companies practicing CI and CD [2, 11].80

The language constructs to implement feature toggles have long been in-

cluded in programming languages. However, the first documented use of feature

toggles to support CI/CD was at Flickr in 2009 [12]. Listing 1 is an example

of a feature toggle usage where the value of the toggle useNewAlgorithm is

checked to determine which search algorithm to call. If the value of the toggle85

useNewAlgorithm is True, the search function calls the new search algorithm,

otherwise calls the old search algorithm [13].

1 function Search () {

2 var useNewAlgorithm = false;

3 if(useNewAlgorithm) {90

4 return newSearchAlgorithm (); }

5 else {

6 return oldSearchAlgorithm (); } }

Listing 1: An example of a feature toggle [13].

Researchers and practitioners have classified feature toggles in five types [14,

15, 16, 1]: (1) release toggle to enable trunk-based development, (2) experiment95

toggle to evaluate new features, (3) ops toggle to control operational aspects,

(4) permission toggle to provide the appropriate functionality to a user, such as

special features to premium users, and (5) development toggle to turn on or off

developmental features. In our analysis, we do not differentiate between these

five types.100

2.2. Related Work

In this section we explain related works on feature toggles, configuration

options, and metrics.

2.2.1. Feature Toggles105

5

Parnin et al. [2] published 10 best practices from a discussion with researchers

and practitioners from 10 companies. One of these best practices—dark launch-

ing—is enabled by feature toggles to incrementally deploy code into production

but keep the new code invisible from users.

Rahman et al. [1] performed a thematic analysis to understand the chal-110

lenges, benefits, and cost of using feature toggles in practice. They quantita-

tively analyzed feature toggle usage across 39 releases of Google Chrome over 5

years. Rahman et al. reported three objectives of using feature toggles: rapid

release, trunk-based development, and A/B testing. They focused on the defi-

nition and usage of feature toggles over time, but we focus on structuring and115

incorporating feature toggles in the last snapshot of the repositories. Whereas

their study was limited to analysis of Chrome’s version history, our study focuses

on qualitative analysis of structuring feature toggles in open source repositories

on a larger scale.

In another study, Rahman et al. [17] extracted four architectural representa-120

tions of Google Chrome: (1) conceptual architecture; (2) concrete architecture;

(3) browser reference architecture; and (4) feature toggle architecture. Their

study showed that using the extracted feature toggle architecture, developers

can find out which module is affected by which feature, and vice versa. Whereas

Rahman et al.’s study focused on the illustration of using feature toggles in un-125

derstanding the modular architecture of the system, our study focuses on the

structures of incorporating feature toggles in a code of the system.

Mahdavi-Hezaveh et al. [13] analyzed grey literature artifacts and academic

papers on feature toggles and identified 17 feature toggle usage practices in 4

categories. Although practices such as “Use naming convention” and “Create130

a clean-up branch”, identified by them, can reflect in the source code, they did

not inspect the codebase which is our focus.

Ramanathan et al. [18] developed a refactoring tool to delete old and unused

feature toggles in the code. Their tool analyzes the abstract syntax tree of the

code, generates a diff on GitHub repository, and assigns it to the author of135

the feature toggle. Meinicke et al. [19] proposed a semi-automated approach to

6

detect feature toggles in open-source repositories, by analyzing the repositories’

commit messages. They found 100 GitHub repositories that use feature toggles

via keyword search in commits. Meinicke et al. analyzed some aspects of feature

toggle usage in these identified repositories, such as the relationship of having140

short-lived toggles and having a toggle owner. Automation tools and approaches

can be improved considering FT-heuristics and FT-metrics.

2.2.2. Configuration Options

Configuration options are key-value pairs to include or exclude functionality145

in a software system [20]. Despite feature toggles and configuration options

being similar concepts, they have distinguishing characteristics, such as their

users and lifetime. Whereas configuration options are used by end-users and

can exist permanently, feature toggles are used by developers and are ideally

removed from code. However, in reality, a large fraction of feature toggles stay in150

the code base forever [19]. Based on the definition of configuration options and

feature toggles by researchers in the literature [20, 1, 14], configuration options

can be considered as a subset of the feature toggles (including ops toggles and

permission toggles) or feature toggles can be seen as configuration options that

are used for new purposes (including release, experiments, and development155

toggles). The concepts of configuration options and feature toggles are not

distinguished clearly in the research literature. In this study, based on [20], if

the value of a feature toggle could be changed by end users, we consider it as a

configuration option.

Sayagh et al. [21] interviewed 14 software engineering experts, surveyed Java160

software engineers, and conducted a literature review on configuration options to

understand practitioners’ process of using configuration options, the challenges

they face, and the best practices that they could follow. One of the identified ac-

tivities in the process of using configuration options is Quality Assurance which

refers to improving software configuration comprehensibility, reducing software165

configuration’s complexity, and improving its maintainability. We consider this

7

categorization in FT-metrics.

Meinicke et al. [22] analyzed highly-configurable programs’ traces to identify

interactions among configuration options. These interactions impact the quality

assurance of the programs as configuration space can grow exponentially. If170

structured incorrectly, this concern applies to feature toggles too. Whereas

Meinicke et al.’s focus was interactions in configuration options, our focus is on

structuring feature toggles.

Zhang et al. [23] studied 1,178 configuration-related commits of four open-

source cloud system repositories. They analyzed the evolution of configuration175

design and implementation in these systems. Zhang et al.’s goal was to un-

derstand developers’ practices to revise the design and the implementation of

configurations from code changes in response to misconfigurations. Whereas

they studied commits from four cloud system repositories over a period of 2.5

years and focused on revision of misconfigurations, our study analyzes 80 repos-180

itories from various domains and our focus is structuring feature toggles in the

code.

2.2.3. Metrics

Chidamber et al. [7] developed and empirically validated a suite of six metrics185

(CK metrics) for object-oriented design. These metrics can be used to measure

the object-oriented software development process improvement. The main fo-

cus of developed metrics is to measure the complexity in the design of classes.

The six metrics are: (1) Weighted Methods Per Class (WMC), (2) Depth of

Inheritance Tree (DIT), (3) Number of Children (NOC), (4) Coupling between190

object classes (CBO), (5) Response For a Class (UFC), (6) Lack of Cohesion

in Methods (LCOM). Although some of our metrics overlap with CK metrics,

Chidamber et al. focused on object-oriented software development which is not

the focus of this paper.

Liebig et al. [8] analyzed 40 open-source software projects that use C prepro-195

cessors (cpp) to implement variable software. Using cpp is a popular approach

8

to implement configuration options. Liebig et al. introduce several metrics to

measure cpp usage in terms of comprehension and refactoring, such as Lines of

Feature Code (LOF) and Granularity (GRAN). Based on their results, Liebig

et al. suggested alternative implementation techniques. Although some of our200

metrics overlap with Liebig et al.’s metrics, Liebig et al. focused on projects

written in C. We do not filter projects based on programming languages. Our

findings are language-independent. As we will discuss in Section 3.2, we consider

these metrics, and via an iterative process, select the ones that can measure the

effect of following FT-heuristics in a repository.205

Although some of our findings may be applicable to structuring configuration

options, we focus on improving the structuring of feature toggles. We conduct

a large-scale qualitative analysis of a set of 80 repositories. Our findings are

programming language independent.

3. Methodology210

Figure 1 summarizes our two-phase method to develop the FT-heuristics

and FT-metrics and the resulting dataset. Phase 1 address RQH and RQM, and

Phase 2 addresses RQS.

3.1. Dataset–Repositories

We analyzed GitHub repositories that incorporate feature toggles. First,215

similar to Meinicke et al. [19], we searched GitHub repositories for the keyword

“feature toggle”. Our search date was 23-May-2019. GitHub categorizes search

results into different categories. We inspected the search results in the follow-

ing categories: (1) Repositories, (2) Code, (3) Commits, and (4) Issues. After

inspecting the first 10 results in each category, we found that the results in the220

“Commits” category were the most appropriate for our study. GitHub search

skips forks by default, so the commits of the forked repositories are excluded

automatically. Including forks could skew the results. Search results in “Repos-

itories” and “Code” categories listed repositories of feature toggle management

systems which are not the focus of this work. Results under “Issues” can also225

9

Phase 1: Observational Study

Step 2: Case Study

Repositories
(case study set)

Repositories
(analysis set)

Analyze

FT-metrics

FT-heuristics

Review

Review

FT-heuristics FT-metrics

Quantitative
Analysis

Statistical
Results

Context metrics

Phase 2:

Issues on
repositories

Email to
developers

FT-heuristics

FT-metrics

Survey
Repositories

(all)

Step 1: Survey

Figure 1: Research methodology outline.

be considered as a source to find repositories that use feature toggles. For this

study, we used results in the “Commits” category but future work could consider

using “Issues”.

GitHub search returned approximately 465,000 commits with “feature” and

“toggle” in their commit messages. By default, GitHub sorts the search results230

by best match, which we found to be appropriate for our search criteria. On

inspection, we found the first 400 search results were most likely relevant to

feature toggles. We manually examined each of the 400 commits including

10

commit messages, the files which were changed, and the changes which were

made to the code; as well as the issues, pull requests, and documentation in235

each repository to find details about incorporating feature toggles.

We identified 110 relevant commits after excluding commits that met at least

one exclusion criteria: (1) Commit URLs that no longer exist; (2) Commits re-

lated to toggle/button input controls in the user interface (UI) of an application.

For example, the commit message is “add toggle-all feature” and the change is240

“added a checkbox to check all the options in UI”. However, wrapping a UI

element with a feature toggle is not excluded; (3) Commits in repositories of

feature toggle management systems which are not in the scope of this study;

and (4) Commits from the repositories in which we cannot distinguish feature

toggles from configuration options. For example, if a toggle is defined in a way245

that end-users can change its value, we exclude the repository.

The selected 110 commits belonged to 80 repositories that use feature toggles

in their development process. We list the language and lines of code (LOC) of

these repositories in Table 1.1

Table 1: Characteristics of the identified repositories.

Language # repositories LOC range

T
op

F
iv

e

TypeScript 17 7,840 to 68,583

Java 15 227 to 361,213

JavaScript 13 10,300 to 783,301

PHP 8 1,567 to 400,034

C# 7 18,232 to 148,390

Other languages 20 170 to 3,547,167

Total 80 170 to 3,547,167

1 Data availability: The data including commits, repositories, and case study details is

posted here: https://sites.google.com/view/feature-toggles-dataset/.

11

https://sites.google.com/view/feature-toggles-dataset/

We randomly selected 60 repositories as the analysis set which was analyzed250

to develop the FT-heuristics and to identify the FT-metrics. The case study set

consisting all 80 repositories (60 repositories from analysis set and 20 additional

repositories) to find the relation between the FT-heuristics and the FT-metrics.

3.2. Phase 1: Observational Study255

Figure 1 (top block) outlines the steps in Phase 1. To address RQH and

RQM, we manually developed FT-heuristic and FT-metrics iteratively and con-

currently through an observational study of the repositories in the analysis set.

We looked for structural patterns and developed a mental model. The FT-

heuristics help in the actionability of FT-metrics. The manual analysis for each260

repository contained the following steps:

(1) Starting with the GitHub commit we used to identify the repository, in-

cluding the commit message, changed files, and changed lines of code in the

commit, we identified the feature toggle configuration file and the feature

toggle class. If the configuration file was not found in changed files, we265

searched the repository for the feature toggle that existed in the commit

and traced it to find the feature toggle configuration file, which contains a

list of toggles.

(2) We searched for the usage of all feature toggles identified in Step 1 in the

code and commit history;270

(3) We inspected issues, pull requests, documentation, and comments to find

information about incorporating toggles.

(4) We recorded the details of structures of incorporating feature toggles ob-

served in Steps 2 and 3, including definition details (e.g. file of definition,

meta-data, names); usage details (e.g. checking value of toggle); removal275

details (e.g. removed lines of codes, changed files).

12

We develop the FT-heuristics to structure feature toggles using notes recorded

in Step 4 of the above process. Following the open coding technique [24], we

assign codes to observational notes from Step 4 and define an FT-heuristic for

each category of codes based on our developed mental model. For example, one280

part of notes for each repository is about how they check the values of feature

toggles with methods. We observe two codes in that note “Check all the values

with one method” and “Check the values with specific methods for each toggle”.

We observed less complexity and less maintainability effort in repositories that

use a shared method for checking feature toggle values. So, we define Heuristic285

1 (SharedMethod) based on these codes and our observations.

The FT-heuristics embody the actionable recommendations based on the

current state of using feature toggles in analyzed repositories. In addition, based

on the notes, FT-heuristics, and considering relevant literature on metrics such

as CK metrics [7] and metrics to measure variablity in software product lines290

using C preprocessors to implement configuration options [8], we identified FT-

metrics to support FT-heuristics iteratively.

During this iterative process, we had the list of the metrics from the literature

[7] and [8]. Although we did not have pre-defined criteria, we discussed the

applicability of each one of the metrics to observed details of incorporating295

feature toggles in repositories iteratively by the first two authors. For example,

metrics “Depth of Inheritance Tree (DIT)” and “Number of Children (NOC)”

from CK metrics have no connection with feature toggles based on authors’

observations. But, the concept behind metric “Lines of Feature Code (LOF)”

from variability metrics is used in our “Feature toggle lines of code (M9)” metric.300

The discussions between the two authors help to reduce the subjective selection

bias of the metrics. In the end, the metrics with no effect by incorporating

feature toggles were removed from the list. Note that, not all metrics came

from literature. We also added other metrics to the final list during this iterative

process based on our observations, such as the presence of guidelines and the305

presence of duplicate code. Then, we categorized FT-metrics based on their

effect and existing categories in literature [21] in three categories: complexity,

13

comprehensibility, and maintainability using card sorting technique [25]. Card

sorting technique for categorizing FT-metrics is done by the first two authors of

the paper. We pre-define these three categories and discuss the correct category310

for each FT-metrics. In this discussion, we rely on our observations from analysis

repositories in this study and our experience as software engineers. When both

authors agree on a category for a FT-metric, we move forward to the next

metric.

The first author performed Phase 1 in consultation with the second author,315

who critically examined the definition and examples of the FT-heuristics, ex-

amined the definitions and measurements of the FT-metrics, and gave feedback

in all steps. Sections 4 and 5 presents the results of Phase 1.

3.3. Phase 2: Survey and Case Study

The bottom block of Figure 1 outlines the two steps in Phase 2, which we320

follow to address RQS.

Step 1 (Survey): To evaluate the acceptance of our FT-heuristics by practition-

ers of all repositories in our dataset, we conducted a survey. In the survey, we

asked to what extent do practitioners agree that the FT-heuristics can be used

to guide practitioners on how to structure and use feature toggles to reduce tech-325

nical debt. We used Likert scale [26] to specify the level of agreement: Strongly

disagree to Strongly agree. 2 To distribute the survey, first we submitted issues

in the repositories that allowed us to submit an issue. Second, we sent emails

to practitioners when an email address of a feature toggles’ contributor was

available.330

Step 2 (Case Study): To find the relation between FT-heuristics and FT-metrics,

we analyzed the default branch of each randomly selected GitHub repository in

the case study set.

First, using the commit by which we identified the repository, we (1) found

the list of toggles in the repository; (2) measured each of the identified FT-met-335

2Published data includes the survey questionnaire.

14

rics; and (3) checked whether the repository follows each of the FT-heuristics.

Additionally, we gathered the following context metrics for each repository:

(1) lines of code; (2) language; (3) number of contributors; and (4) number of

feature toggles. We used the cloc [27] to calculate lines of code and identify the

language. Using the GitHub profile of each repository, we identified the number340

of contributors for that repository. The number of toggles was identified via

manual inspection of the repository.

Next, to examine the relationship between the FT-heuristics and the FT-

metrics, for each heuristic, we separated repositories in two groups based on

whether they follow (F) or do not follow (NF) that heuristic.345

To compare the differences between the metric values yielded by the following

(F) and not following (NF) groups of repositories, we define a measure named

Improvement in Section 6.3. Improvement is computed as the percentage im-

provement in a FT-metric by following a FT-heuristic. Using the improvement

measure, we discuss the trends in case study repositories.350

In Appendix A, we report preliminary statistical analyses on case study data.

This analysis includes regression analysis using the Best Subset Selection [28]

(linear regression models for numeric metrics and logistic regression models for

binary metrics) for each FT-metric.

The first author collected data, and the first and second authors performed355

statistical analysis of the results. We report the result of the survey; and the

observed relation between FT-heuristics, FT-metrics, context metrics in Sec-

tion 6.

4. FT-Heuristics

We now describe FT-heuristics which we derive by analyzing 60 “analysis360

set” repositories in Phase 1 of our method. For each FT-heuristic, we provide

examples found in the repositories which follow or not-follow that heuristic. Our

naming convention for the example is H (for Heuristic), followed by the heuristic

number, followed by the subscript FE if the example is the following example,

15

and NFE if it is a not-following example. The number at the end of the subscript365

is a counter of examples for that heuristic. For instance, H1FE1 means the first

following example for Heuristic 1. The number in the parenthesis in front of

each FT-heuristic name (subsection title) is the number of the repositories that

follow the heuristic. Note that a low number for a heuristic does not necessarily

correspond to low importance for that heuristic. A low number could be a sign370

of a related bad smell. For instance, we are aware that not having test cases is

a bad smell but only 17 repositories follow H6 (Testing).

The derived FT-Heuristics are similar to general software engineering best

practices. However, we find that these are not followed by developers in all

repositories in the analysis set. So, increasing the awareness of the developers375

about the impact of following these heuristics is important.

4.1. Shared Method to Check Value (26)

Heuristic 1 (SharedMethod). Using one shared method to check the value

of all feature toggles, instead of having a method to check the value for each

feature toggle, can help reduce complexity and increase maintainability.

The value of a feature toggle is checked in a conditional statement of code.380

One approach to access the value of a toggle is to call a feature toggle value

checking method from the feature toggle class, which is often named isEnabled()

[13]. The lower the number of feature toggle value checking methods, the lower

the code complexity. Having fewer feature toggle value checking methods also

decreases (1) the number of files and the lines of code that need to be modified385

to implement and maintain a feature toggle; and (2) the probability of the pres-

ence of dead codes when deleting feature toggles because an associated feature

toggle value checking method does not need to be deleted.

H1FE1: In Listing 2, the name of the toggle is passed to the method and the

value of the toggle is checked in the list of feature toggles [29]. When adding a390

feature toggle, the developer should add the toggle only to the configuration file

or database. By doing so, the toggle can be used anywhere in the code. Adding

the toggle to the configuration file minimizes the number of modified files and

16

lines of code. For removal, the toggles need to be deleted from the configuration

file or the database and the part of the code where it is used. No modifications395

are needed to the value checking method.

1 export const isFeatureEnabled = (feature:Feature) =>

2 (window as any).appSettings[feature] === ’on’ || (window as any).

appSettings[feature] === ’true’;

Listing 2: One shared IsEnabled value checking method [29].

H1NFE2: The code in Listing 3 shows each feature toggle having its own400

function to check its value [30]. When developers want to define a new feature

toggle, instead of adding a toggle and its value to the configuration file, they

define a new customized isEnabled() function in the file contains all other

isEnabled() functions. The number of files which should be changed is one,

but the number of lines of code that should be changed is larger compared to405

H1FE1.

1 public bool IsAggregateOverCalculationsEnabled () {

2 return true; }

Listing 3: IsEnabled function for one toggle [30].

4.2. Self-Descriptive Feature Toggles (19)

Heuristic 2 (SelfDescriptive). Using intention-revealing names for toggles,

adding a description field in the configuration file as a meta-attribute for each

feature toggle, and including comments when using the toggles can improve

comprehensibility.

410

Having self-descriptive code is a known practice in software development [31,

32]. Self-descriptive code improves understanding and reduces code maintenance

effort. Also, Sayagh et al. [33] suggest having self-descriptive configuration

options. Feature toggles may remain in the codebase for a while and should be415

treated similarly to implementation code. For example, adding comments is a

way to make code understandable.

H2FE1: As Listing 4 shows, each toggle in the configuration file of CFS-

Frontend repository of the UK Education and Skills Funding Agency [34] has

17

an intention-reveling name and a description which makes the purpose of the420

toggle clear.

1 "EnableCheckJobStatusForChooseAndRefresh": {

2 "type": "bool",

3 "metadata": {

4 "description": "Enable checking calc job status prior to425

choosing and refreshing" },

5 "defaultValue": true }

Listing 4: A feature toggle with description [34].

H2FE2: A repository of Automattic [35] uses intention-revealing names and

comments to explain code related to feature toggles. Two of these example

comments (pertaining to autorenewal toggle in the code) are: “The toggle is430

only available for the plan subscription for now, and will be gradually rolled

out to domains and G suite” and “remove this once the proper state has been

introduced.”

H2FE3: In the configuration file of a Salesforce repository [36], the feature

toggles are grouped in two groups: long term toggles and short term toggles.435

The following is the description developers provided as a comment: “Defining a

toggle in either ‘shortTermToggles’ or ‘longTermToggles’ has no bearing on how

the toggle behaves—it is purely a way for us to keep track of our intention for a

particular feature toggle. It should help us keep things from getting out of hand

and keeping tons of dead unused code around.” For adding short term toggles440

the comment is “add a new toggle here if you expect it to just be a short-term

thing, i.e. we’ll use it to control the rollout of a new feature, but once we are

satisfied with the new feature, we’ll pull it out and clean up after ourselves.” In

addition, this team uses intention-revealing names for feature toggles, and the

configuration file is well commented.445

In a survey study [13], practitioners suggested to “Determine the type of

the toggle” before adding it to the code. When developers specify if the feature

toggle is a short-lived toggle or a long-lived toggle, they can plan to remove the

toggle at an appropriate time. Later, if developers need to limit the number

18

of feature toggles in the code, they have a list of short-lived toggles which can450

potentially be removed first from the code.

H2NFE4: Developers of HMCTS [37] named a feature toggle FEATURE TOGGLE 520

which doesn’t convey its purpose.3

4.3. Guidelines for Managing Feature Toggles (10)

Heuristic 3 (Guidelines). Providing guidelines for adding or removing

feature toggles can improve comprehensibility and maintainability.
455

Management of feature toggles, including adding and removing toggles, is

a challenge for developers and project managers. If feature toggles are added

arbitrarily, a large number of toggles may end up in the code after a while.

Developers should know when to add a feature toggle (For every new feature?460

For every huge change?) and when to delete a feature toggle (In a month? After

publishing a new release?). Hence including guidelines for adding and removing

toggles is important. Dead code may be introduced if the developers do not

know when or how to remove a toggle correctly.

An example of feature toggle management is using pull requests to remove465

a toggle [13]. We observed that developers use issues and pull requests to add

and remove toggles. Development teams may use other project management

systems, such as a Kanban board, or wiki pages [21] to manage toggles, how-

ever, these are not tightly integrated with the code base and may be missed by

developers.470

H3FE1: In a repository of The Guardian [38], developers use pull requests

to delete a feature toggle. Developers can use “feature toggle in:title” as search

string in the list of issues and pull requests of repositories to find those related

to toggles.

H3NFE2: In a repository from Australian Department of Veterans’ Affairs475

[39], the guideline for adding feature toggles is provided in the README file.

3This feature toggle is now removed from the code. The link to the removing commit is

https://bit.ly/34tcjOk

19

https://bit.ly/34tcjOk

Although the developers have guidelines for adding toggles, they do not have

guidelines for removing toggles.

4.4. Use Feature Toggles Sparingly (53)

Heuristic 4 (UseSparingly). Using a feature toggle in as few locations as

possible in the code can reduce complexity and improve maintainability.
480

Having more locations to edit makes using feature toggles harder for de-

velopers. The additional number of files to update causes an increase in the

development effort and the possibility of creating dead code. The more number

of paths in the code, the higher the code complexity. Note that, the focus in485

this FT-heuristic is not to minimize the “number” of the feature toggles, but

the count of files that a toggle is used in them is better to be as low as possible.

H4FE1: Feature toggles could be either checked directly in conditional if-

statements, or be used to set the value of a variable, and then the new variable

could be checked or used in the rest of the code [1]. Listing 5 shows an example490

of using feature toggles to set the value of another variable. Instead of individ-

ually checking the three conditions in the example, only the canFork variable is

checked in the rest of the file [40]. In Listing 5, instead of removing or updating

the toggle at all locations in the file, the toggle can be removed or updated in

Lines 3 and 4.495

1 // Set the value of a variable using a feature toggle.

2 const canFork = props.selection.isSingleDocument () &&

3 props.me.feature_toggles &&

4 props.feature_toggles.includes("forking");

Listing 5: Use feature toggles to set value to a new variable.

H4NFE2: One way to store the value of a toggle is using configuration files,500

but in some repositories more than one configuration file exists for the same

set of feature toggles. The Multiplication Tables Check (MTC) project of UK

Department of Education [41] has 14 files for feature toggles. To remove or to

edit a feature toggle, a developer must remove or edit the toggle in all of the 14

configuration files. Missing any of these files could cause issues, such as dead505

20

code. The reason for using more than one file could be project-specific, such

as managing multiple platforms, but it increases complexity and decreases the

maintainability of the code.

4.5. Avoid Duplicate Code in Using Feature Toggles (57)

Heuristic 5 (AvoidDuplicate). When a feature toggle that wraps the same

code is used more than once in the same file, creating a method containing the

feature toggle with the wrapped piece of code can improve maintainability.

510

Duplicate code is a code smell [42]. When the consequent fragment of code

wrapped by a feature toggle’s conditional if-statement appears more than once

in the same file; that counts as duplicate code, adds complexity to the code,

and may create dead code. However, the extract method refactoring pattern515

[42] could be used with feature toggle’s consequent fragment of code to avoid

duplicate code and subsequent repercussions

H5NFE1: In Salesforce’s refocus repository [43], the code in Listing 6 is a

fragment of code wrapped with a feature toggle. This block of code appears

twice in the same file. The extract method refactoring pattern could be used to520

prevent duplicate code.

1 if (featureToggles.isFeatureEnabled(’enableWorkerActivityLogs ’) &&

jobResultObj && logObject) {

2 mapJobResultsToLogObject(jobResultObj , logObject);

3 if (featureToggles.isFeatureEnabled(’enableQueueStatsActivityLog ’525

)) {

4 queueTimeActivityLogs.update(jobResultObj.recordCount ,

jobResultObj.queueTime); }

5 activityLogUtil.printActivityLogString(logObject , ’worker ’);

6 }530

Listing 6: Code block that appears twice in the same file [43].

4.6. Test Cases for Feature Toggles (17)

Heuristic 6 (Testing). Including test cases for each feature toggle can

improve maintainability.

21

Software testing is a recommended activity for assessing the quality and

correctness of the code [44]. Feature toggles can determine the logic flow and535

behavior of a product, so must be correct and of high quality. Automated

test cases of feature toggles can be used as regressions test which enhances

maintainability. Test cases should remain in the code if the development team

decides to make the feature permanent.

H6FE1: In the Multiplication Tables Check (MTC) project of UK Depart-540

ment of Education [45], when developers decided to make a feature wrapped in

a feature toggle permanent, they removed unit tests for a disabled toggle and

kept the tests for an enabled toggle with changed names.

4.7. Complete Removal of a Feature Toggle (21)

Heuristic 7 (CompleteRemoval). Ensuring complete removal of a feature

toggle by removing it from source code files, configuration files, and test cases

can improve maintainability.

545

Developers should remove feature toggles when the purpose of using the

toggles is accomplished. They should remove the code related to the feature

toggle from all files in the source code, including configuration files and test files.

Incomplete removal can cause problems such as dead code [3]. One solution to550

ensure complete removal of a feature toggle is to have an implementation that

throws a compilation error when a feature toggle exists in the code after being

removed from the configuration files.

H7FE1: In this commit [46], the developers of the Multiplication Tables

Check (MTC) project from UK Department for Education completely removed555

a “prepareCheckMessaging” feature toggle from the configuration files, code,

and test cases.

5. FT-metrics

We now describe the FT-metrics we identify to support the FT-heuristics.

Following the steps in Section 3.2, first, we manually analyze the 60 repositories560

22

in the analysis set. We identify 12 metrics based on our observations of struc-

turing feature toggles in the repositories. Based on their effect on the code base,

using card sorting technique and existing categorization in the literature [21],

we group these metrics into three categories: Complexity, Comprehensibility,

and Maintainability.565

Below, we list the 12 FT-metrics. The type of each metric, binary or numeric,

is mentioned after the metric’s name. For binary metrics (M3–M6, M10–M12),

in this study, we consider the presence or absence of the metric in the reposito-

ries. A higher level of granularity may be obtained via an automated tool, as

discussed in Section 8. FT-metrics are as follows:570

Complexity is the degree to which a system has a design or implementation

that is difficult to understand and verify [47].

• M1: Number of added paths in code (Numeric) is computed using the Mc-

Cabe’s Cyclomatic Complexity [48]. McCabe’s Cyclomatic Complexity counts

the number of paths in code based on the number of decision points. Incor-575

porating a feature toggle adds decision points to the code, so we can use this

metric to compute the added complexity. We focus on the change in the code

when developers use feature toggles, so we measure the “change” of the Cy-

clomatic complexity of the code. For example, if adding a feature toggle adds

one if statement in the code, we count “+1” for the Cyclomatic complexity580

of the code. The lower the number of added paths in the code, the better.

• M2: Number of feature toggle value checking methods (Numeric) is measured

based on the concept behind Weighted Methods per Class (WMC). WMC is

one of the CK object-oriented metrics [7] which is computed as the number

of methods in a class. To compute this metric, we count the number of585

feature toggle value checking methods in the feature toggle class manually.

We assume all the methods have equal complexities, so the weight for all is

1.0.

Comprehensibility is the degree to which a system is understandable to the

developers.590

23

• M3: Presence of guidelines (Binary) helps developers know the processes of

adding and removing a feature toggle. The absence of guidelines may cause

problems such as the creation of dead code after a toggle removal. Guidelines

may be provided as a document in repositories or as comments in feature

toggles’ configuration files.595

• M4: Intention-revealing names (Binary) for variables and methods is a known

practice in coding [31]. A feature toggle’s name and related methods should

tell the reader what value the toggle holds and what task does the code

wrapped by it accomplishes. M4 is a subjective metric.

• M5: Use of comments (Binary) as human-readable notes that support the600

source code is a coding practice [32] that helps developers understand the

purpose and behavior of the feature toggles.

• M6: Use of description (Binary) for each feature toggle can be used to clarify

a toggle’s purpose. The description could be added as an attribute to the

feature toggle class. Listing 4 in Section 4 is an example of including descrip-605

tions. Unlike comments which are not available everywhere, object attributes

are accessible throughout the code base.

Maintainability is the ease with which a software system can be modified to

correct faults, improve performance or other attributes, or adapt to a changing

environment [47].610

• M7: Number of files (Numeric) which contain a feature toggle, including

configuration, code, and test files. The higher the number of files that need

to be changed to support feature toggles, the higher the probability to make

a mistake. We count the number of files for each feature toggle and then

average it for each repository based on the number of toggles. The number615

of the files could be context-dependent. For instance, separate platforms can

have separate configuration files.

• M8: Number of locations (Numeric) where a feature toggle is defined and

used. As an example, consider a toggle used in two files. In a configuration

file, a toggle is mentioned once to set the value of the toggle and, in another620

24

file, the same toggle is used twice in if-statements. In this case, the number

of locations for this toggle is three. We count the number of locations where

each feature toggle is defined and used and then average the count for each

repository.

• M9: Feature toggle lines of code (Numeric) which are directly associated with625

a feature toggle when the toggle is added or removed from a repository. In

general, the number of lines of code is a metric to measure maintainability

in software systems [49]. In our definition, this metric measures the effort a

developer should expend to make any change to the code related to a feature

toggle. We count the lines of codes for defining and testing each feature toggle630

(and not feature toggle usage and enclosed code) and then average it on the

number of toggles in each repository.

• M10: Presence of duplicate code (Binary) is a code smell [50]. Duplicate

code is a problem of repeating the same block of the code. We consider code

fragment that contains checking the value of a feature toggle in a conditional635

statement and the piece of code wrapped by the toggle as duplicate code. In

case of updating or removing the toggle, all occurrences of the duplicate code

need to be updated or removed.

• M11: Presence of dead code (Binary) is one of the drawbacks of using feature

toggles in an incorrect way. Dead code is a part of the code which is not used640

in any execution path [51]. If developers decide to remove a feature toggle, the

toggle should be removed from all parts of the code, including configuration

files, code, and test cases. In this study, dead code is considered “present” if

we found a feature toggle definition or test cases for a toggle but that toggle

is not used in the code anymore.645

• M12: Presence of test cases (Binary) for feature toggles is a metric to measure

whether feature toggles are tested. Feature toggles should be tested similarly

to implementation code. We consider two types of test cases: (1) checking

the values of the feature toggles; and (2) checking the behavior of the code

based on the value of the feature toggle. If the repository has any type of test650

25

Table 2: Hypothesized relationship between FT-heuristics and FT-metrics.

Categories Metrics H1 H2 H3 H4 H5 H6 H7

Complexity
M1 (Paths) 4

M2 (Methods) 4

Comprehensibility

M3 (Guidelines) 4

M4 (Intention) 4

M5 (Comments) 4

M6 (Description) 4

Maintainability

M7 (Files) 4 4 4

M8 (Locations) 4 4

M9 (LOC) 4 4 4

M10 (Duplicate) 4

M11 (Dead) 4 4 4 4

M12 (Test cases) 4

H1 to H7 are list of FT-heuristics: SharedMethod (H1), SelfDescriptive

(H2), Guidelines (H3), UseSparingly (H4), AvoidDuplicate (H5), Testing

(H6), CompleteRemoval (H7)

cases for the majority of the feature toggles in the code base, we record “yes”

for this metric.

Table 2 shows hypothesized relations between FT-heuristics and FT-metrics.

The hypothesized relations are determined based on observations in Phase 1 of

the methodology and iterative discussions between the first two authors.655

26

6. Survey and Case Study

We now explain Phase 2 of the method in Figure 1 and Section 3.3. We

propose the following sub-research questions to investigate RQS on evaluating

FT-heuristics and FT-metrics.

SRQPA (Practitioners’ agreement): To what extent do practitioners agree660

that the FT-heuristics can be used to guide practitioners on how to structure

and use feature toggles to reduce technical debt?

SRQHM (Heuristics and metrics): What is the relation between adoption

of FT-heuristics and values of FT-metrics?

To address these proposed sub-research questions, we conduct a survey of665

practitioners from 80 repositories, and a case study with all 80 repositories as

the case study set.

6.1. Practitioners Agreement by Survey (SRQPA)

To evaluate the acceptance of FT-heuristics by practitioners, we asked the

practitioners the difficulty in managing feature toggles and the extent of their670

agreement that the FT-heuristics can be used to guide practitioners on how

to structure and use feature toggles to reduce technical debt. We used a five-

point Likert scale for difficulty: Not at all difficult (1) to Very difficult (5); for

agreement: Strongly disagree (1) to Strongly agree (5). We included an N/A

option too.675

To reach out to practitioners and elicit their responses on the survey ques-

tionnaire, we first submitted 72 issues in 80 repositories in our dataset. The

settings of the other 8 repositories did not allow us to submit an issue. We

received 8 responses via issues. Next, we sent 57 emails to practitioners of

45 repositories associated with feature toggles’ commits and changed files, and680

received 12 responses. For 35 repositories, email addresses of feature toggles’

contributors were not available. Table 3 shows the 20 survey respondents’ ex-

perience and frequency of using feature toggles.

The 20 practitioners (survey respondents) have 3–5 years (median) of expe-

rience of using feature toggles. They use feature toggles in half of their projects685

27

Table 3: Survey respondents’ experience and frequency of using feature toggles. Underline

indicates median.

Experience # practitioners Usage frequency # practitioners

1–3 years 5 Rarely in projects 6

3–5 years 7 Half of the projects 6

5–8 years 3 Most of the

projects

5

8+ 0 All of the projects 2

N/A 5 N/A 1

(median). As summarized in Figure 2, the practitioners perceive managing

feature toggles to be somewhat difficult and agree that feature toggles increase

technical debt. Of the 20 survey respondents, 19 practitioners strongly agree and

one practitioner agrees with CompleteRemoval (H7), stressing the importance

of complete removal of feature toggle and how that can improve maintainabil-690

ity. The medians of the agreement to all FT-heuristics are over 4 indicating

Agree, and the individual means of the agreement to FT-heuristics are all at

least 3.7, which is close to Agree. The respondents agree that following each of

the seven FT-heuristics could guide practitioners on how to structure and use

feature toggles to reduce technical debt.695

We also asked practitioners for their suggestions to reduce the technical

debt of using feature toggles. Only one of the practitioners answered. The

practitioner suggested considering the count of developers who interact with

each toggle and the last time each changed the code in the path of using the

feature toggle. This is similar to the spreadsheet that Chrome’s developers use700

to record the owner of feature toggles [1]. Future works could consider including

this metric and corresponding heuristic.

Although we use a survey to evaluate the acceptance of FT-heuristics by

practitioners, the main focus of Phase 2 of the methodology (Survey and Case

Study) is on the case study to find the relation between the adoption of FT-705

28

Difficulty

Not at all difficult

Somewhat difficult

Moderately difficult

Difficult

Very difficult

(a) Difficulty of feature toggle management.

Agreement

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

(b) Feature toggle usage increases technical

debt.

H
1

(S
h
a
re

d
M

et
h
o
d
)

H
2

(S
el

fD
es

cr
ip

ti
v
e)

H
3

(G
u
id

el
in

es
)

H
4

(U
se

S
p
a
ri

n
g
ly

)

H
5

(A
v
o
id

D
u
p
li
ca

te
)

H
6

(T
es

ti
n
g
)

H
7

(C
o
m

p
le

te
R

em
ov

a
l)

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

FT-heuristics

x̃=4 x̃=4 x̃=4 x̃=4 x̃=4 x̃=4.5 x̃=5

(c) Extent of agreement for FT-heuristic. x̃ is median; © is mean.

Figure 2: Summary of practitioner survey.

heuristics and the values of FT-metrics.

6.2. Repository Inspection

We inspect each repository in the case study set and identify the toggles in

its master branch. From 80 repositories in the case study set, 9 repositories have

no feature toggle in their master branch. So 71 repositories are used for case710

29

study analysis. For each toggle, we manually compute FT-metrics, as described

in Section 5, and the context metrics, as described in Section 3.3 in the last

snapshot of each repository. We also manually identify if each repository follows

the FT-heuristics using the following criteria and hypothesized dependent FT-

metrics for each heuristic:715

SharedMethod (H1): if the values of all toggles are checked using a shared

value checking method; not applicable to repositories that check primitive values

of toggles in conditional statements.

SelfDescriptive (H2): if the repository has at least two of the following three

FT-metrics for the majority of the toggles: (1) intention-revealing names; (2) use720

of comments; or (3) and use of description.

Guidelines (H3): if the repository has guidelines to manage feature toggles.

UseSparingly (H4): if, based on an expert’s (first author’s) subjective judg-

ment a feature toggle could be used in fewer files or locations.

AvoidDuplicate (H5): if the repository does not have feature toggle dupli-725

cate code based on an expert’s (first author) subjective judgment.

Testing (H6): if the feature toggles have associated test cases.

CompleteRemoval (H7): if there is no trace of toggles in the codebase for

which there are associated commit message(s) referring to toggle removal.

We also checked the usage of available feature toggle management packages730

in these repositories. Only 13 of those use feature toggle management packages.

In the remaining 67 repositories, the contributors implement their own feature

toggle management approach.

6.3. FT-heuristics and FT-metrics (SRQHM)

We now address SRQHM on the relation between the adoption of FT-heuristics735

and the values of the FT-metrics.

Tables 4, 5, and 6 summarize our results. In Table 4, # of repositories,

of contributors, # of feature toggles are context metrics, in Table 5, M1,

M2, M7–M9 are numeric FT-metrics, and in Table 6, M3–M6 and M10–M12

are binary FT-metrics. In all three tables ‘F’ is for repositories that follow a740

30

heuristic and ‘NF’ is for the repositories which do not follow that heuristic.

For numeric metrics, the values for ‘F’ and ‘NF’ in Table 5 are the normalized

average µ (except for M2 which is an absolute number). For example, the

average number of files (M7) for the repositories that follow SharedMethod (H1)

is 4.3 versus 4.2 for the repositories that do not follow H1. For binary metrics in745

Table 6, the values are the fraction of the repositories that have the metric in

‘F’ repositories or ‘NF’ repositories. For instance, 40% of the repositories that

follow SharedMethod (H1) have test cases (M12) and 20% of the repositories

that do not follow H1 have M12.

In Tables 5 and 6, the gray cells show the hypothetical relation between FT-750

heuristics and FT-metrics. The hypothesized relations are determined based on

observations in Phase 1 of the methodology and iterative discussions between

the first two authors as shown in Table 2. The results of the case study may

support these relations or show new relations.

In the following paragraphs, we analyze the results for each FT-heuristic755

based on Table 4, Table 5, and Table 6. The percentage improvements are

calculated by Equation 1:

Improvements =
F−NF

NF
× 100 (1)

Improvements can be positive or negative. For example, for the FT-metric

Guidelines (M3) in SharedMethod (H1) FT-heuristic, the improvement is 303.9%,760

i.e., the existence of guidelines in repositories that follow H1 is 303.9% more than

those that do not follow H1. For the same FT-heuristic (H1), the improvement

value for the number of the value-checking method (M2) is –93.7% that shows

the number of the value checking methods in repositories that follow H1 is 93.7%

lower, which is reasonable. The improvements are shown in Tables 4, 5, and 6765

as Im.

SharedMethod (H1): We observe that repositories which follow H1 (n = 26)

have more contributors and feature toggles compared to those which do not

31

Table 4: Observations from case study of 71 repositories for context metrics.

H
1
(S

h
a
re

d
M

et
h
o
d
)

H
2
(S

el
fD

es
cr

ip
ti

v
e)

H
3
(G

u
id

el
in

es
)

H
4
(U

se
S
p
a
ri

n
g
ly

)

H
5
(A

v
o
id

D
u
p
li
ca

te
)

H
6
(T

es
ti

n
g
)

H
7
(C

o
m

p
le

te
R

em
ov

a
l)

C
o
n
te

x
t

M
et

ri
cs

n (# repositories)
F 26 19 10 53 57 17 21

NF 45 52 61 18 14 54 13

contributors

F 40.3 39.1 73.5 19.7 21.6 24.4 24.6

NF 20.3 23.4 20.1 50.8 52.2 28.6 53.9

Im 98.5 67.1 266.0 −61.2 −58.7 −14.7 −54.4

feature toggles

F 19.5 20.1 27.7 12.0 10.9 7.0 14.8

NF 9.5 10.7 10.8 16.8 22.6 15.2 26.2

Im 105.0 87.5 156.0 −28.6 −52.0 −53.8 −43.5

follow H1 (n = 45). In repositories which follow H1, from our hypothesized

relationships, number of value checking method (M2) is 93.7% lower; but the770

number of files (M7), lines of code (M9), and presence of dead code (M11) do

not have significant difference compared to repositories not following H1. We

unexpectedly observe the metric presence of guidelines (M3) is improved 303.9%,

and presence of test cases (M12) is improved 147.3% for repositories which follow

H1. As we mentioned 13 repositories use feature toggle management packages.775

From these 13 repositories, 10 repository have feature toggles in their master

branch. From these 10 repositories, 8 repositories follow H1. This shows that

having a shared method to check the value of feature toggle is an accepted

heuristic for feature toggle management package providers.

SelfDescriptive (H2): We notice that the repositories that follow H2 (n = 19)780

have more contributors and more feature toggles compared to repositories with-

out self-descriptive feature toggles (n = 52). From hypothesized relationships,

32

Table 5: Observations from case study of 71 repositories for numeric metrics. Gray cells

indicate the hypothetical relation between FT-heuristics and FT-metrics as mentioned in

Table2.

H
1
(S

h
a
re

d
M

et
h
o
d
)

H
2
(S

el
fD

es
cr

ip
ti

v
e)

H
3
(G

u
id

el
in

es
)

H
4
(U

se
S
p
a
ri

n
g
ly

)

H
5
(A

v
o
id

D
u
p
li
ca

te
)

H
6
(T

es
ti

n
g
)

H
7
(C

o
m

p
le

te
R

em
ov

a
l)

N
u
m

er
ic

M
et

ri
cs

M1 (Paths)

F 1.4 1.7 1.7 1.3 1.3 1.9 2.0

NF 1.5 1.4 1.4 2.0 2.2 1.4 1.0

Im −8.7 19.2 21.0 −33.4 −41.8 38.6 111.4

M2 (Methods)

F 1.1 9.6 1.0 6.3 5.1 2.9 2.2

NF 17.0 3.7 6.6 3.1 6.8 7.0 5.6

Im −93.7 156.6 −84.8 102.4 −25.1 −58.0 −60.3

M7 (Files)

F 4.3 4.9 5.2 3.4 4.0 5.0 5.2

NF 4.2 4.0 4.1 6.9 5.1 4.0 4.8

Im 3.5 20.7 28.2 −51.1 −20.2 26.3 7.7

M8 (Locations)

F 5.7 6.0 7.3 5.0 5.5 8.1 7.3

NF 5.9 5.7 5.6 8.1 7.1 5.1 5.6

Im −2.5 4.4 31.6 −37.8 −23.2 60.6 31.7

M9 (LOC)

F 7.1 5.5 4.7 5.8 5.9 13.7 10.8

NF 5.7 6.5 6.5 7.4 7.5 3.8 4.8

Im 24.7 −14.3 −26.6 −21.4 −20.9 257.8 127.4

presence of comments (M5) and presence of descriptions (M6) are higher and

improved by more than 3,000% in repositories which follow H2. In addition, we

observe that these repositories have 41.4% less duplicate code (M10), and 31.6%785

less dead code (M11). Since having the intention-revealing names is one of the

known coding practices [31], we observe that M4 is the most existed metric in

all the repositories.

33

Table 6: Observations from case study of 71 repositories for binary metrics. Gray cells indicate

the hypothetical relation between FT-heuristics and FT-metrics as mentioned in Table2.

H
1
(S

h
a
re

d
M

et
h
o
d
)

H
2
(S

el
fD

es
cr

ip
ti

v
e)

H
3
(G

u
id

el
in

es
)

H
4
(U

se
S
p
a
ri

n
g
ly

)

H
5
(A

v
o
id

D
u
p
li
ca

te
)

H
6
(T

es
ti

n
g
)

H
7
(C

o
m

p
le

te
R

em
ov

a
l)

B
in

a
ry

M
et

ri
cs

M3 (Guidelines)

F 0.3 0.2 0.9 0.2 0.1 0.2 0.2

NF 0.1 0.1 0.0 0.1 0.3 0.1 0.3

Im 303.9 17.3 5390.0 35.9 −63.2 36.1 −38.1

M4 (Intention)

F 0.9 1.0 1.0 1.0 1.0 1.0 1.0

NF 1.0 0.9 1.0 0.9 0.9 0.9 1.0

Im −5.6 6.1 5.2 10.4 3.9 5.9 0

M5 (Comments)

F 0.2 0.6 0.3 0.2 0.1 0.1 0.2

NF 0.1 0.0 0.1 0.2 0.2 0.2 0.0

Im 44.2 – 128.8 −9.4 −34.5 −29.4 –

M6 (Description)

F 0.2 0.6 0.3 0.2 0.2 0.1 0.2

NF 0.2 0.0 0.2 0.2 0.1 0.2 0.1

Im 48.4 3184.2 83.0 −23.6 194.7 −73.5 209.5

M10 (Duplicate)

F 0.2 0.2 0.6 0.2 0.1 0.3 0.3

NF 0.2 0.3 0.2 0.4 1.0 0.2 0.4

Im −5.6 −41.4 232.7 −61.8 −94.7 −32.4 −13.3

M11 (Dead)

F 0.4 0.3 0.6 0.3 0.4 0.3 0.1

NF 0.3 0.4 0.3 0.4 0.4 0.4 0.9

Im 15.4 −31.6 92.6 −12.7 −1.8 −20.6 −89.7

M12 (Test cases)

F 0.4 0.1 0.4 0.3 0.2 1.0 0.4

NF 0.2 0.3 0.2 0.2 0.3 0.0 0.3

Im 147.3 −63.5 87.7 10.4 −20.2 – 23.8

34

Guidelines (H3): Similar to SharedMethod (H1), repositories that follow H3

(n = 10) have a 266% more contributors and 156.0% more feature toggles. The790

metric presence of guidelines (M3) is hypothesized metric for H3 and it is better

and 5,390% more in repositories which follow the heuristic. Other hypothesized

metric is dead code (M11) which we observe that it is 92.6% lower in repositories

which do not follow H3. Among non-hypothesized relationships, in repositories

which follow H3, the metrics presence of duplicate code (M10) is on average795

232.7% higher . So, we observe that mere having documented guidelines or

using issues or pull requests for structuring feature toggles does not necessarily

prevent the occurrence of dead code and duplicate code resulting from feature

toggle usage.

UseSparingly (H4): In contrast to SharedMethod (H1) and Guidelines (H3),800

H4 is followed more in repositories (n = 53) with a lower number of contributors

and a lower number of the feature toggles. From hypothesized relationships, the

repositories which follow H4 have 51.1% lower number of files (M7), and 37.8%

lower number of locations (M8). For the rest of the metrics, nothing specific is

observed except for the presence of duplicate code (M10) which is 61.8% lower805

by following H4.

AvoidDuplicate (H5): We observe that repositories which follow H5 (n =

57) on average have fewer contributors and a lower number of feature toggles

compared to repositories which do not follow H5 (n = 14). We note that

in repositories which follow H5, from hypothesized relationships, presence of810

duplicate code (M10) is 94.7% less. In addition, in these repositories, number

of paths (M1) is 41.8% less. However, presence of guidelines (M3) are 63.2%

lower compared to repositories which do not follow H5.

Testing (H6): We notice that repositories (n = 17) with a lower number of

feature toggles follow H6. H6 has one hypothesized relationship with FT-metric815

presence of test cases (M12), which is obviously better in repositories which

follow H6. We observe that the number of locations (M8) are 60.6% more and

lines of code (M9) are 257.8% more for repositories that follow H6 compared to

those that do not follow H6 . Larger values for M8 and M9 are reasonable as

35

having test cases increase the number of the locations and lines of code related820

to feature toggles.

CompleteRemoval (H7): We observe that repositories with a larger number

of contributors and a larger number of feature toggles do not follow the H7.

From hypothesized relationships, repositories that follow H7 have less dead code

(M11) by 89.7%. Among non-hypothesized relationships, use of comments (M5)825

is higher (non of the not following repositories use comments), number of paths

(M1) is 111.4% higher, and number of value checking methods (M2) is 60.3%

lower .

7. Threats to Validity

Internal validity. We searched GitHub for keyword “feature toggle” and checked830

only the first 400 search results. We may have missed repositories that use

feature toggles in their development process. Developing FT-heuristics and

identifying FT-metrics could be subjective to the first author’s knowledge. To

mitigate this threat, the second author critically reviewed the FT-heuristics

and FT-metrics and give feedback. We also conducted a survey to evaluate the835

findings with practitioners of GitHub repositories in our dataset. Although,

FT-heuristics and FT-metrics cover the lifecycle of a feature toggle from design

to clean-up and our process was iterative and involved more than one person,

we do not claim the completeness of our findings. Future works could find more

heuristics and metrics.840

In the case study, we only discuss the trends in improvement in FT-metrics

when following FT-heuristics. In Appendix A, we report on our findings from

preliminary statistical analyses of the case study data. The statistical findings

could be strengthened with replication on a larger dataset.

External validity. We use open source repositories from GitHub for our study.845

Including repositories from other organizations, such as proprietary organiza-

tions, may change the results of our study. To check the generalization of our

result, we performed a case study on a set of repositories. If more repositories

36

were analyzed in the case study, we would have stronger evidence of generaliza-

tion.850

Construct validity. Incorrect classification of a code snippet in the 80 GitHub

repositories as a feature toggle could render our results invalid. To mitigate this

threat, the first author critically examined each feature toggle implementation

in consultation with the second author.855

8. Lessons Learned and Future Work

Lessons learned.

Our survey respondents—practitioners who routinely use feature toggles,

agree with (1) the difficulty of managing feature toggles; (2) the increase of

technical debt by using toggles; and (3) the FT-heuristics can be used to guide860

practitioners on how to structure and use feature toggles to reduce technical

debt.

Based on our case study and survey observations, we note:

SharedMethod (H1). Using shared method is more common in repositories

with guidelines and test cases compared to those without guidelines and test865

cases. However, we did not observe any meaningful difference in number of

files, lines of code, and dead code when following this heuristic compared to not

following it.

SelfDescriptive (H2). Having self-descriptive feature toggles help in prevent-

ing duplicate code and dead code in a repository. We did not hypothesize the870

relation between self-descriptive feature toggles and and metrics duplicate code

and dead code but we find these metrics to be lower with repositories having

self-descriptive feature toggles.

Guidelines (H3). Providing guidelines to manage feature toggles may not

necessarily reduce duplicate and dead code. Practitioners may mandate guide-875

lines by other means such as code review.

UseSparingly (H4). Using toggles sparingly is the second most followed FT-

37

heuristic in our case study set. Doing so reduces duplicate code, as a non-

hypothesized metric.

AvoidDuplicate (H5). Avoiding duplicate code in using feature toggles is the880

most followed FT-heuristic in our case study set. This shows that developers

are aware of the negative effects of having duplicate code for feature toggles as

other parts of the code.

Testing (H6). Although surveyed practitioners agree on having Test cases for

feature toggles, this heuristic is second least followed in our case study. Finding885

the effect of the lack of test cases for feature toggles is a direction for future

studies.

CompleteRemoval (H7). Complete removal of a feature toggle received the

highest agreement by survey respondents. Following FT-heuristic on ensuring

complete removal of feature toggles reduces the presence of the dead code.890

As a result, we suggest practitioners create self-descriptive feature toggles

(H2), use feature toggles sparingly (H4), avoid duplicate code in using feature

toggles (H5), and ensure complete removal of a feature toggle (H7). Practi-

tioners may follow FT-heuristics without measuring FT-metrics. However, we

strongly suggest practitioners to consider four FT-metrics: number of feature895

toggle value checking methods (M2), presence of guidelines (M3), presence of

duplicate code (M10), and presence of test cases (M12).

Since the identified FT-heuristics are very similar to general software engi-

neering best practices in software development literature, feature toggles should

be considered as regular code even though they will not reside permanently in900

the code. However, even these general software engineering best practices are

not followed by all of the analyzed repositories. Not structuring feature tog-

gles correctly, can cause severe damages to the project. Thus, increasing the

awareness of the effect of following and not following FT-heuristics is important.

Future work. The FT-metrics can be validated by 47 criteria to validate soft-905

ware metrics extracted by Meneely et al. [52] in future work. In our study, we

manually computed the metrics. An automated tool for computing FT-metrics

and applying FT-heuristics for structuring feature toggles in the code base is

38

a future direction. Such a tool could be used to conduct a larger scale evalua-

tion effort to generalize our findings outside of open source repositories. In this910

study, we analyze the last snapshot of repositories. A direction for future work

is to consider metrics related to “lifetime” of feature toggles from the history

of repositories, such as how long the toggle lived in the code base, or who is

the last developer who touched the toggle. Considering additional metrics can

result in additional heuristics about structuring feature toggles in code bases.915

Our case study result shows that Testing (H6) is not followed by a large num-

ber of repositories (54). We focus on raising awareness about having test cases

for feature toggles. Considering the importance of testing strategies and espe-

cially combinatorial testing related to configuration options [53], research on

combinatorial testing for feature toggles can be a future direction. We conduct920

preliminary statistical analysis (Appendix A) on the case study dataset and

report our findings. A future direction is to conduct a larger-scale empirical

study with rigorous statistical analysis to strength these findings on the rela-

tionship between following FT-heuristics and improving FT-metrics and finding

new relationships.925

References

[1] M. T. Rahman, L.-P. Querel, P. C. Rigby, B. Adams, Feature toggles: Prac-

titioner practices and a case study, in: Proceedings of the 13th International

Conference on Mining Software Repositories (MSR), ACM, Austin, 2016,

pp. 201–211.930

[2] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Hol-

man, J. Micco, B. Murphy, T. Savor, et al., The top 10 adages in continuous

deployment, IEEE Software 34 (3) (2017) 86–95.

[3] Knightmare: A devops cautionary tale, [Online]. Available: https://

dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/935

Accessed 24 April 2019.

39

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

[4] E. Tom, A. Aurum, R. Vidgen, An exploration of technical debt, Journal

of Systems and Software 86 (6) (2013) 1498–1516.

[5] J. Bird, Feature toggles are one of the worst kinds of tech-

nical debt, [Online]. Available: https://dzone.com/articles/940

feature-toggles-are-one-worst Accessed 6 August 2020.

[6] G. A. Moore, Crossing the Chasm: Marketing and Selling Technology

Project, Harper Collins, New York, 2009.

[7] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design,

IEEE Transactions on Software Engineering (TSE) 20 (6) (1994) 476–493.945

[8] J. Liebig, S. Apel, C. Lengauer, C. Kästner, M. Schulze, An analysis of

the variability in forty preprocessor-based software product lines, in: Pro-

ceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 1, 2010, pp. 105–114.

[9] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases950

through Build, Test, and Deployment Automation, Pearson Education,

Boston, 2010.

[10] M. Fowler, Continuous delivery, [Online]. Available: https://

martinfowler.com/bliki/ContinuousDelivery.html, Accessed 6 Au-

gust 2019, (2013).955

[11] A. A. U. Rahman, E. Helms, L. Williams, C. Parnin, Synthesizing contin-

uous deployment practices used in software development, in: Proceedings

of the IEEE Agile Conference, IEEE, 2015, pp. 1–10.

[12] R. Harmes, Flipping out, [Online]. Available: http://code.flickr.net/

2009/12/02/flipping-out/, Accessed 6 August 2019 (2009).960

[13] R. Mahdavi-Hezaveh, J. Dremann, L. Williams, Software development with

feature toggles: practices used by practitioners, Empirical Software Engi-

neering 26 (1) (2021) 1–33.

40

https://dzone.com/articles/feature-toggles-are-one-worst
https://dzone.com/articles/feature-toggles-are-one-worst
https://dzone.com/articles/feature-toggles-are-one-worst
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html
http://code.flickr.net/2009/12/02/flipping-out/
http://code.flickr.net/2009/12/02/flipping-out/
http://code.flickr.net/2009/12/02/flipping-out/

[14] P. Hodgson, Feature toggles (aka feature flags), [Online]. Available: https:

//martinfowler.com/articles/feature-toggles.html, Accessed 6 Au-965

gust 2019 (2017).

[15] B. Hodges, Progressive experimentation with feature

flags, [Online]. Available: https://docs.microsoft.

com/en-us/azure/devops/learn/devops-at-microsoft/

progressive-experimentation-feature-flags, Accessed 6 August970

2019.

[16] R. Kohavi, R. Longbotham, D. Sommerfield, R. M. Henne, Controlled ex-

periments on the web: Survey and practical guide, Data mining and knowl-

edge discovery 18 (1) (2009) 140–181.

[17] M. T. Rahman, P. C. Rigby, E. Shihab, The modular and feature toggle975

architectures of Google Chrome, Empirical Software Engineering (EMSE)

22 (2) (2018) 1–28.

[18] M. K. Ramanathan, L. Clapp, R. Barik, M. Sridharan, Piranha: Reducing

feature flag debt at uber, in: Proceedings of the 42nd ACM/IEEE Interna-

tional Conference on Software Engineering (ICSE), ACM, Seoul, 2020, pp.980

1–10.

[19] J. Meinicke, J. Hoyos, B. Vasilescu, C. Kästner, Capture the feature flag:

Detecting feature flags in open-source, in: Proceedings of the 17th Inter-

national Conference on Mining Software Repositories (MSR), Seoul, 2020,

pp. 169–173.985

[20] J. Meinicke, C.-P. Wong, B. Vasilescu, C. Kästner, Exploring differences

and commonalities between feature flags and configuration options, in: Pro-

ceedings of the ACM/IEEE 42nd International Conference on Software

Engineering: Software Engineering in Practice, ICSE-SEIP ’20, Associ-

ation for Computing Machinery, New York, NY, USA, 2020, p. 233242.990

doi:10.1145/3377813.3381366.

URL https://doi.org/10.1145/3377813.3381366

41

https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/progressive-experimentation-feature-flags
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/progressive-experimentation-feature-flags
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/progressive-experimentation-feature-flags
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/progressive-experimentation-feature-flags
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/progressive-experimentation-feature-flags
https://doi.org/10.1145/3377813.3381366
https://doi.org/10.1145/3377813.3381366
https://doi.org/10.1145/3377813.3381366
http://dx.doi.org/10.1145/3377813.3381366
https://doi.org/10.1145/3377813.3381366

[21] M. Sayagh, N. Kerzazi, B. Adams, F. Petrillo, Software configuration en-

gineering in practice: Interviews, survey, and systematic literature review,

IEEE Transactions on Software Engineering (TSE).995

[22] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, G. Saake, On essential con-

figuration complexity: Measuring interactions in highly-configurable sys-

tems, in: Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2016, pp. 483–494.

[23] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, T. Xu, An evolutionary1000

study of configuration design and implementation in cloud systems, in:

2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), 2021, pp. 188–200. doi:10.1109/ICSE43902.2021.00029.

[24] J. Saldaña, The coding manual for qualitative researchers, Sage, 2015.

[25] G. Rugg, P. McGeorge, The sorting techniques: A tutorial paper on card1005

sorts, picture sorts and item sorts, Expert Systems 22 (3) (2005) 94–107.

[26] R. Likert, A technique for the measurement of attitudes, Archives of Psy-

chology.

[27] A. Danial, Cloc: Count lines of code, [Online]. Available: http://cloc.

sourceforge.net/, Accessed 24 July 2019.1010

[28] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statis-

tical learning, Vol. 112, Springer, 2013.

[29] NAV - The Norwegian Labour and Welfare Directorate,

pleiepengesoknad, [Online]. Available: https://github.com/

FeatureToggleStudy/pleiepengesoknad/blob/master/src/app/1015

utils/featureToggleUtils.ts#L7 Accessed 27 February 2020.

[30] Education and Skills Funding Agency Team, Cfs-backend, [Online]. Avail-

able: https://github.com/SkillsFundingAgency/CFS-Backend/

blob/d4461bda36e3d785909350233f833594984823c3/Debugging/

42

http://dx.doi.org/10.1109/ICSE43902.2021.00029
http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
https://github.com/FeatureToggleStudy/pleiepengesoknad/blob/master/src/app/utils/featureToggleUtils.ts#L7
https://github.com/FeatureToggleStudy/pleiepengesoknad/blob/master/src/app/utils/featureToggleUtils.ts#L7
https://github.com/FeatureToggleStudy/pleiepengesoknad/blob/master/src/app/utils/featureToggleUtils.ts#L7
https://github.com/FeatureToggleStudy/pleiepengesoknad/blob/master/src/app/utils/featureToggleUtils.ts#L7
https://github.com/FeatureToggleStudy/pleiepengesoknad/blob/master/src/app/utils/featureToggleUtils.ts#L7
https://github.com/SkillsFundingAgency/CFS-Backend/blob/d4461bda36e3d785909350233f833594984823c3/Debugging/CalculateFunding.DebugAllocationModel/FeatureToggles.cs
https://github.com/SkillsFundingAgency/CFS-Backend/blob/d4461bda36e3d785909350233f833594984823c3/Debugging/CalculateFunding.DebugAllocationModel/FeatureToggles.cs
https://github.com/SkillsFundingAgency/CFS-Backend/blob/d4461bda36e3d785909350233f833594984823c3/Debugging/CalculateFunding.DebugAllocationModel/FeatureToggles.cs
https://github.com/SkillsFundingAgency/CFS-Backend/blob/d4461bda36e3d785909350233f833594984823c3/Debugging/CalculateFunding.DebugAllocationModel/FeatureToggles.cs
https://github.com/SkillsFundingAgency/CFS-Backend/blob/d4461bda36e3d785909350233f833594984823c3/Debugging/CalculateFunding.DebugAllocationModel/FeatureToggles.cs

CalculateFunding.DebugAllocationModel/FeatureToggles.cs Ac-1020

cessed 21 October 2019.

[31] N. B. Dale, C. Weems, M. R. Headington, Introduction to Java and Soft-

ware Design: Swing Update, Jones & Bartlett Learning, 2003.

[32] G. Penny, A. A. Takang, Software Maintenance: Concepts and Practice,

World Scientific, 2003.1025

[33] M. Sayagh, N. Kerzazi, F. Petrillo, K. Bennani, B. Adams, What should

your run-time configuration framework do to help developers?, Empirical

Software Engineering 25 (2) (2020) 1259–1293.

[34] UK Education and Skills Funding Agency Team, Cfs-frontend,

[Online]. Available: https://github.com/featuretogglestudy/1030

CFS-Frontend/blob/39961217b8aabd665c71b108903d87014a41582c/

DevOps/frontend-azure.dfe.json#L237 Accessed 27 February 2020.

[35] Automattic, wp-calypso, [Online]. Available:

https://github.com/Automattic/wp-calypso/blob/

8d1bf0b0146fc341288059c765e8a3bf8c8bb7ef/client/me/purchases/1035

manage-purchase/purchase-meta.jsx Accessed 21 October 2019.

[36] Salesforce, refocus, [Online]. Available: https:

//github.com/salesforce/refocus/blob/

18116cb7df73c0db70af3c6115342ccf93db6534/config/toggles.js

Accessed 21 October 2019.1040

[37] UK HM Courts & Tribunals Service , div-case-orchestration-

service, [Online]. Available: https://github.com/hmcts/

div-case-orchestration-service Accessed 24 August 2020.

[38] The Guardian, Grid, [Online]. Available: https://github.com/

guardian/grid Accessed 27 February 2020.1045

43

https://github.com/SkillsFundingAgency/CFS-Backend/blob/d4461bda36e3d785909350233f833594984823c3/Debugging/CalculateFunding.DebugAllocationModel/FeatureToggles.cs
https://github.com/SkillsFundingAgency/CFS-Backend/blob/d4461bda36e3d785909350233f833594984823c3/Debugging/CalculateFunding.DebugAllocationModel/FeatureToggles.cs
https://github.com/featuretogglestudy/CFS-Frontend/blob/39961217b8aabd665c71b108903d87014a41582c/DevOps/frontend-azure.dfe.json#L237
https://github.com/featuretogglestudy/CFS-Frontend/blob/39961217b8aabd665c71b108903d87014a41582c/DevOps/frontend-azure.dfe.json#L237
https://github.com/featuretogglestudy/CFS-Frontend/blob/39961217b8aabd665c71b108903d87014a41582c/DevOps/frontend-azure.dfe.json#L237
https://github.com/featuretogglestudy/CFS-Frontend/blob/39961217b8aabd665c71b108903d87014a41582c/DevOps/frontend-azure.dfe.json#L237
https://github.com/featuretogglestudy/CFS-Frontend/blob/39961217b8aabd665c71b108903d87014a41582c/DevOps/frontend-azure.dfe.json#L237
https://github.com/Automattic/wp-calypso/blob/8d1bf0b0146fc341288059c765e8a3bf8c8bb7ef/client/me/purchases/manage-purchase/purchase-meta.jsx
https://github.com/Automattic/wp-calypso/blob/8d1bf0b0146fc341288059c765e8a3bf8c8bb7ef/client/me/purchases/manage-purchase/purchase-meta.jsx
https://github.com/Automattic/wp-calypso/blob/8d1bf0b0146fc341288059c765e8a3bf8c8bb7ef/client/me/purchases/manage-purchase/purchase-meta.jsx
https://github.com/Automattic/wp-calypso/blob/8d1bf0b0146fc341288059c765e8a3bf8c8bb7ef/client/me/purchases/manage-purchase/purchase-meta.jsx
https://github.com/Automattic/wp-calypso/blob/8d1bf0b0146fc341288059c765e8a3bf8c8bb7ef/client/me/purchases/manage-purchase/purchase-meta.jsx
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/config/toggles.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/config/toggles.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/config/toggles.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/config/toggles.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/config/toggles.js
https://github.com/hmcts/div-case-orchestration-service
https://github.com/hmcts/div-case-orchestration-service
https://github.com/hmcts/div-case-orchestration-service
https://github.com/guardian/grid
https://github.com/guardian/grid
https://github.com/guardian/grid

[39] Australian Department of Veterans’ Affairs, myservice-prototype, [On-

line]. Available: https://github.com/AusDVA/myservice-prototype

Accessed 9 October 2019.

[40] Pelagios Network, recogito2-workspace-frontend, [Online]. Available:

https://github.com/pelagios/recogito2-workspace-frontend/1050

blob/367723732cfa74c4f38e542b88c0a4491789cc04/src/profile/

Profile.jsx Accessed 9 October 2019.

[41] UK Department for Education, Multiplication Tables Check (MTC)

Project, [Online]. Available: https://github.com/DFEAGILEDEVOPS/MTC/

tree/0eb2d765b6683c90c852ba21c225742f07f050b9/admin/config Ac-1055

cessed 9 October 2019.

[42] M. Fowler, Refactoring: improving the design of existing code, Addison-

Wesley Professional, 2018.

[43] Salesforce, refocus, [Online]. Available: https:

//github.com/salesforce/refocus/blob/1060

18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.

js Accessed 9 October 2019.

[44] M. A. Ould, C. Unwin, Testing in software development, Cambridge Uni-

versity Press, 1986.

[45] UK Department for Education, Multiplication Tables Check (MTC)1065

Project, [Online]. Available: https://github.com/DFEAGILEDEVOPS/

MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9#

diff-8633026cf78840f2cb5a5b32fe1aa00f Accessed 11 October 2019.

[46] UK Department for Education, Multiplication Tables Check (MTC)

Project, [Online]. Available: https://github.com/DFEAGILEDEVOPS/1070

MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9 Accessed 27

February 2020.

44

https://github.com/AusDVA/myservice-prototype
https://github.com/pelagios/recogito2-workspace-frontend/blob/367723732cfa74c4f38e542b88c0a4491789cc04/src/profile/Profile.jsx
https://github.com/pelagios/recogito2-workspace-frontend/blob/367723732cfa74c4f38e542b88c0a4491789cc04/src/profile/Profile.jsx
https://github.com/pelagios/recogito2-workspace-frontend/blob/367723732cfa74c4f38e542b88c0a4491789cc04/src/profile/Profile.jsx
https://github.com/pelagios/recogito2-workspace-frontend/blob/367723732cfa74c4f38e542b88c0a4491789cc04/src/profile/Profile.jsx
https://github.com/pelagios/recogito2-workspace-frontend/blob/367723732cfa74c4f38e542b88c0a4491789cc04/src/profile/Profile.jsx
https://github.com/DFEAGILEDEVOPS/MTC/tree/0eb2d765b6683c90c852ba21c225742f07f050b9/admin/config
https://github.com/DFEAGILEDEVOPS/MTC/tree/0eb2d765b6683c90c852ba21c225742f07f050b9/admin/config
https://github.com/DFEAGILEDEVOPS/MTC/tree/0eb2d765b6683c90c852ba21c225742f07f050b9/admin/config
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.js
https://github.com/salesforce/refocus/blob/18116cb7df73c0db70af3c6115342ccf93db6534/jobQueue/jobWrapper.js
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9#diff-8633026cf78840f2cb5a5b32fe1aa00f
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9#diff-8633026cf78840f2cb5a5b32fe1aa00f
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9#diff-8633026cf78840f2cb5a5b32fe1aa00f
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9#diff-8633026cf78840f2cb5a5b32fe1aa00f
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9#diff-8633026cf78840f2cb5a5b32fe1aa00f
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9
https://github.com/DFEAGILEDEVOPS/MTC/commit/0eb2d765b6683c90c852ba21c225742f07f050b9

[47] IEEE Standards Coordinating Committee, IEEE Standard Glossary of

Software Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos,

CA: IEEE Computer Society 169.1075

[48] T. J. McCabe, A complexity measure, IEEE Transactions on Software En-

gineering (TSE) 2 (4) (1976) 308–320.

[49] I. Heitlager, T. Kuipers, J. Visser, A practical model for measuring main-

tainability, in: Proceedings of the 6th International Conference on the

Quality of Information and Communications Technology (QUATIC), IEEE,1080

2007, pp. 30–39.

[50] C. K. Roy, J. R. Cordy, A survey on software clone detection research,

Queen’s School of Computing TR 541 (115) (2007) 64–68.

[51] H. Xi, Dead code elimination through dependent types, in: G. Gupta (Ed.),

Practical Aspects of Declarative Languages, First International Workshop,1085

PADL ’99, San Antonio, Texas, USA, January 18-19, 1999, Proceedings,

Vol. 1551 of Lecture Notes in Computer Science, Springer, 1999, pp. 228–

242. doi:10.1007/3-540-49201-1_16.

URL https://doi.org/10.1007/3-540-49201-1_16

[52] A. Meneely, B. Smith, L. Williams, Validating software metrics: A spec-1090

trum of philosophies, ACM Transactions on Software Engineering and

Methodology (TOSEM) 21 (4) (2013) 1–28.

[53] M. B. Cohen, J. Snyder, G. Rothermel, Testing across configurations: im-

plications for combinatorial testing, ACM SIGSOFT Software Engineering

Notes 31 (6) (2006) 1–9.1095

Appendix A. Preliminary Statistical Analysis

In this section, we report on the preliminary statistical analysis we conduct

on the case study dataset.

45

https://doi.org/10.1007/3-540-49201-1_16
http://dx.doi.org/10.1007/3-540-49201-1_16
https://doi.org/10.1007/3-540-49201-1_16

Algorithm 1 Best Subset Selection algorithm adapted from [28]

For each FT-metric:

For k = 1, 2, . . . , p: # Identify the best model for each k

if FT-metric is numeric then

(1) Fit all
(
p
k

)
linear regressions that contain exactly k predictors

(2) Select µk = Model with largest adjusted R2 (best model)

else if FT-metric is binary then

(1) Fit all
(
p
k

)
logistic regressions that contain exactly k predictors

(2) Select µk = Model with lowest LLR p-value

end if

Select a single best model from µ1, . . . , µp

if FT-metric is numeric then

(1) Conduct ANOVA to compare the models

(2) Select bestmodelmetric = Model with lowest F-test p-value where

p < 0.05

else if FT-metric is binary then

(1) Compare LLR p-values of the models

(2) Select bestmodelmetric = Model with lowest LLR p-value where

p < 0.05

end if

46

We perform Best Subset Selection [28] and identify the best subset of pre-

dictors (including context metrics and FT-heuristics) to improve each one of1100

the FT-metrics. Algorithm 1 outlines this process to identify the best subset

for each FT-metrics. Since FT-heuristics are categorical predictors, we have

created dummy variables for them [28]. So, we have 17 predictors to use in our

regression analysis. Following Algorithm 1, for each FT-metric, we fit 17 mod-

els with 1 predictor, 136 models with 2 predictor, 680 models with 3 predictor,1105

2,380 models with 4 predictor, 6,188 models with 5 predictor, 12,376 models

with 6 predictor, 19,448 models with 7 predictor, 24,310 models with 8 predic-

tor, 24,310 models with 9 predictor, 19,448 models with 10 predictor, 12,376

models with 11 predictor, 6,188 models with 12 predictor, 2,380 models with

13 predictor, 680 models with 14 predictor, 136 models with 15 predictor, 171110

models with 16 predictor, and 1 model with 17 predictors. In the set of models

for any number of predictors, we select the best one. Then from 17 selected

models, we select a single best model as the overall best model.

For each FT-metric, we report the predictors of overall best model in Ta-

ble A.7. In Table A.7, ↑ indicates the predictor in the best subset with positive1115

coefficient, and ↓ indicates the predictor in the best subset with negative coef-

ficient.

Comparing the result in Table A.7 and Table 2 confirms the correctness of six

of the hypothesized relations. For example, we observed that repositories that

do not follow H4 (UseSparingly) have higher number of the locations for feature1120

toggles (M8 (Location)) and, repositories that do not follow H7 (CompleteRe-

moval) of feature toggles have more dead code (M11 (Dead)). In addition, we

find 26 new relations (non-hypothesised) between FT-metrics and FT-heuristics.

For example, we find a relationship between H1 (SharedMethod) and M10 (Du-

plicate), meaning that in our case study set when repositories do not have shared1125

method, they have more duplicate code. To strengthen these newly identified

relations, future works could conduct a larger-scale empirical study.

47

Table A.7: Best Subset Selection result for FT-metrics. ↑ indicates the predictor is in the

overall best model with positive coefficient. ↓ indicates the predictor is in the overall best

model with negative coefficient.

Metrics #
co

n
tr

ib
u
to

rs

#
fe

a
tu

re
to

g
g
le

s

H
1
(S

h
a
re

d
M

et
h
o
d
-F

)

H
1
(S

h
a
re

d
M

et
h
o
d
-N

F
)

H
2
(S

el
fD

es
cr

ip
ti

v
e-

F
)

H
2
(S

el
fD

es
cr

ip
ti

v
e-

N
F

)

H
3
(G

u
id

el
in

es
-F

)

H
3
(G

u
id

el
in

es
-N

F
)

H
4
(U

se
S
p
a
ri

n
g
ly

-F
)

H
4
(U

se
S
p
a
ri

n
g
ly

-N
F

)

H
5
(A

v
o
id

D
u
p
li
ca

te
-F

)

H
5
(A

v
o
id

D
u
p
li
ca

te
-N

F
)

H
6
(T

es
ti

n
g
-F

)

H
6
(T

es
ti

n
g
-N

F
)

H
7
(C

o
m

p
le

te
R

em
ov

a
l-

F
)

H
7
(C

o
m

p
le

te
R

em
ov

a
l-

N
F

)

H
7
(C

o
m

p
le

te
R

em
ov

a
l-

U
n
k
n
ow

n
)

C
o
m

p
le

x
it

y

M1 (Paths)

M2 (Methods) ↑ ↑

C
o
m

p
re

h
en

si
b
il
it

y

M3 (Guidelines) ↓ ↑ ↓

M4 (Intention) ↑ ↑ ↓ ↑ ↑ ↓ ↑

M5 (Comments) ↑ ↓

M6 (Description) ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓

M
a
in

ta
in

a
b
il
it

y

M7 (Files)

M8 (Locations) ↑ ↑

M9 (LOC) ↓ ↑

M10 (Duplicate) ↑ ↑ ↑ ↓ ↓

M11 (Dead) ↑

M12 (Test cases) ↓ ↑ ↓ ↓ ↑ ↓

48

	Introduction
	Background and Related Works
	Background
	Related Work
	Feature Toggles
	Configuration Options
	Metrics

	Methodology
	Dataset–Repositories
	Phase 1: Observational Study
	Phase 2: Survey and Case Study

	FT-Heuristics
	Shared Method to Check Value (26)
	Self-Descriptive Feature Toggles (19)
	Guidelines for Managing Feature Toggles (10)
	Use Feature Toggles Sparingly (53)
	Avoid Duplicate Code in Using Feature Toggles (57)
	Test Cases for Feature Toggles (17)
	Complete Removal of a Feature Toggle (21)

	FT-metrics
	Survey and Case Study
	Practitioners Agreement by Survey (SRQPA)
	Repository Inspection
	FT-heuristics and FT-metrics (SRQHM)

	Threats to Validity
	Lessons Learned and Future Work
	Preliminary Statistical Analysis

