

ABSTRACT
This paper presents work on a recommendation system for
Knowledge assisted Agile Requirements Evolution (K-gileRE).
We treat requirements engineering as a special case of knowledge
engineering and emphasize the fact that providing a domain
knowledge edge can impart agility to the requirements definition
exercise. The approach differs from existing agile methods in that
it seamlessly incorporates a domain knowledge base into an agile
requirements definition framework and explicitly provides to
requirement analysts, relevant online domain specific
recommendations based on underlying ontologies. The framework
presents a ‘domain knowledge seed’ to requirement analysts. The
seed provides a view of core features in a given domain and
associated knowledge elements such as business processes, rules,
policies, partial data models, use cases and test cases,. These in
turn are mapped with agile requirements elements such as user
stories, features, tasks, product backlog, sprints and prototype
plans. The requirement analyst can evolve the seed to suit her
specific project needs. As she modifies and evolves the seed
specification, she receives domain-specific online
recommendations to improve the correctness, consistency and
completeness of her requirement specification documents and
executable models. Using the domain knowledge seed as a point
of departure provides a jump-start to her project. Each exercise of
requirements definition thus becomes an evolution from the seed
instead of the traditional ‘clean slate’ Requirements Engineering
(RE) that typically starts from the scratch. Hence, the term K-
gileRE. We elaborate how K-gileRE helps in practicing the
essence of agile doctrines while defining software requirements by
providing just-in-time recommendations.

Categories and Subject Descriptors

D.2.1 [Software]: Software Engineering – Requirement
specification, D.2.13 [Reusable software]: Domain Engineering,
D.2.13 [Reusable software]: Reuse models, H.3.5 [Information
Storage and Retrieval]: Online Information Systems

General Terms
Management, Documentation, Design, Experimentation

Keywords
Domain-specific recommendations, Knowledge assisted Agile,
Collaborative and semantic requirements definition,

1. INTRODUCTION
The agile movement has made a significant change of stance

in terms of embracing pragmatic variants of their original
recommendations. Industry veterans [1, 2] take cognizance of the
need for agile to evolve and embrace ground realities of software
developments. This has been due to the realization that adoption
depends largely on how well a method (agile or otherwise) can
support the real-life issues involved in software development. As
a result, we see a lot of agile research and literature focusing on
adapting the original agile doctrines to suit practical situations.
‘Agile requirements’ is one such point of focus [3] wherein we
notice a change of stance from emphasis on an entirely code-
driven development to a need to have in place at least a
‘lightweight’ requirements specification. We address this need by
devising a Knowledge assisted Agile Requirements Evolution (K-
gile RE) framework. The framework presents a ‘domain
knowledge seed’ that can be evolved into a specification
(document+ executable models). A requirement analyst who
works on the seed uses the online domain-specific
recommendations offered by K-gileRE as she evolves the seed to
suit her project.

K-gileRE framework treats requirements engineering as a
special case of knowledge engineering. It integrates four different
knowledge contexts (Environmental, Generic requirements, Agile
requirements and the Problem Domain) in the form of four
ontologies. We employ mechanisms to specify semantic mappings

Manish Kumar, Nirav Ajmeri
Tata Research, Development and

Design Center (TRDDC)
A Division of Tata Consultancy Services

54 Hadapsar Industrial Estate Pune
411013, India

+91 20 6608 6441

{manish9.k, nirav.ajmeri}@tcs.com

Smita Ghaisas
Tata Research, Development and

Design Center (TRDDC)
A Division of Tata Consultancy Services

54 Hadapsar Industrial Estate Pune
411013, India

+91 20 6608 6434

smita.ghaisas@tcs.com

Towards Knowledge Assisted Agile Requirements Evolution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
RSSE’10, May 4, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-974-9 /10/05…$10.00.

16

of conclusions drawn from instance of one ontology to elements
in other ontologies and provide recommendations based on the
integrated inference. The online just-in-time recommendations
help the requirement analyst in improving completeness,
correctness and consistency of her specifications by providing an
in-built and explicit domain knowledge value. The
recommendations may be specific to a singular context or span the
four knowledge contexts when necessary in response to actions of
the requirement analyst. For example, if a requirement analyst
selects some features from the domain seed and attempts to
modify them in the context of her project, she would be presented
with business rules, in the given geography e.g. ‘Pension rules in
Europe’ (Environmental context and Problem domain context). If
she selects features that complement each other but decides to
associate them with different sprints, she would receive
recommendations to rearrange them (Problem Domain context
and Agile Requirements context). If she selects conflicting
features in a given domain, she would be alerted about the
inconsistency of her selection (singularly the Problem Domain
context). We present examples to illustrate our approach and also
discuss how it supports agile doctrines.

The paper continues into section 2 on illustration of the K-
gileRE model.

2. The K-gileRE Model
The four ontologies in K-gile RE ‘Environmental Context

Ontology’, ‘Agile Requirements Ontology’ and ‘Problem Domain
Ontology’ are constructed using the grounded theory [4] and
implemented using RDF-OWL schema [5]. Fig 1 shows partial
example instances of the ontologies

2.1 Environmental Context Ontology
 This ontology is designed to capture the environment in which
software requirements are to be defined. For example, a
requirement analyst may want to capture requirements for a
Claims module of a Life Insurance application for a customer
ABC Inc. in the Asia-Pacific geography. The concepts , ‚‘Actor’,
‘Action’, ‘Domain’, ‘LineofBusiness’‚ ’Customer’ and
‘Geography’, are abstractions used to capture the information.

Figure 1 Example knowledge base instances and bridge
classes that refer to them for context-specific
recommendations

2.2 Problem Domain Ontology
 This ontology provides abstractions to capture the essence of
the problem domain. For example, consider the following
scenario- ‘In event of death of a policyholder, a beneficiary may
submit a claim request.’ The abstractions such as
‘BusinessEvent’, ‘BusinessType’, ‘Party’, ‘BusinessAction’ let
one capture this information.

2.3 Requirements Ontology
The domain seed that we present to the requirement analyst

is built around abstractions that capture requirements definition
elements such as business goals, features, business processes and
sub-processes, business constraints (laws of the land,
organizational policies), use cases and business entities. The
Requirements Definition ontology provides for abstractions that
let one capture and organize requirements in terms of these
elements and their relationships. This ontology is derived from
our previous work. [6 and references therein]

2.4 Agile Requirements Ontology
 This contains concepts specific to the agile requirements,

e.g. ‘UserStory’, ‘Feature’, ‘ProductBacklog’ and ‘Sprint’ and so
on.

2.5 Mappings between the elements of
different ontologies

 The ‘Business events’ (e.g. Claim submission), Business
Actions (e.g. Investigate Claim) and ‘Business Decisions’ (e.g.
Adjugation) in the ‘Problem Domain Ontology’ map to
‘Business process’ (e.g. Claims Process) in the ‘Generic
Requirements Ontology’.
 ‘Business Goals’ (e.g. Reduce Costs) in the ‘Generic
Requirements Ontology’ are designed to deliver ‘Business
Value’,(e.g. Profit margin) a concept in ‘Problem Domain
Ontology’
 ‘Business Constraint’ in the ‘Problem Domain Ontology’
(e.g. a New legislation) in maps to ‘Validation’ (e.g. Verify
conformance to rule) in ‘Generic Requirements Ontology’.
 The ‘Business Party’, (e.g. Insurer), ‘Business Object’ (e.g.
Claim) and ‘Business Document’ (e.g. Policy) from the
“Problem Domain Ontology’ correspond to ’Data Elements’ in
the ‘Generic Requirements Ontology’.
 ‘Feature’ (e.g. Claim intimation and booking) in ‘Agile
Requirements Ontology’ maps to ‘SubProcess’ (Claim
Intimation process). in ‘Generic Requirements Ontology’.
 ‘User Story’ and ‘Task’ in Agile Ontology’ maps to ‘Use
Cases ‘ in “Generic Requirements Ontology’
 ‘Data Elements’ (e.g. Corresponding to Claim intimation) in
‘Generic Requirements Ontology’ can be used to create
‘Prototypes’ (e.g. Claim intimation screens) in ‘Agile
requirements’ context.

Thus, through its linkage with the ‘Generic Requirements
Ontology’, the Agile Requirements Ontology’ has mappings to
the ‘Problem Domain Ontology’.

Requirement definition for each Module is divided into sets
of ‘Sprints’ to be executed in specific time frames. Each sprint
consists of ‘Features’ which are restricted by certain ‘Business
Constraints’. Further, each feature maps to ‘User Stories’ captured

17

during the Analyst – Stakeholder interactions. ‘User Stories’ are
associated with ‘Use Cases’ and ‘Test Cases’. A ‘Sprint’ consists
of tasks associated with ‘Features’ and is further mapped with
‘Product Backlog’ and ‘Burndown’ which can be displayed
graphically in K-gileRE. Additionally, a ‘User story’ is mapped to
a ‘Business process’ relevant to the selected ‘Feature’. This serves
as a reference for system testing.

The framework facilitates evolution of the domain seed into
project-specific requirements by providing online semantic
recommendations that are based on the underlying ontologies and
their instances. This is achieved by employing the ’Bridge classes’
and inference rules written in the Semantic Web Rule Language
(SWRL). The ‘Bridge classes’ specify semantic mappings of
conclusions drawn from one ontology to elements of another
ontology.

For example, the ‘Actor’ (e.g. requirement analyst) performs
functions like ‘Select domain’, ‘select geography’ and so on.
Based on the selection, the K-gile RE framework draws logical
conclusion about what modules should be presented to her. If she
has selected ‘Insurance’, ‘Life’, ‘Asia’ and ‘ABC Insurance’, the
K-gileRE framework presents to her modules like ‘Claim’,’
Reinsurance’ and features such as ‘Claim initiation’, ‘Waiver
management’ and so on inferred by the ‘Bridge classes’. She can
select to work with features relevant to her project. If the
requirement analyst selects to work with conflicting features (such
as ’Claim intimation for death due to unnatural cause’ together
with ’Document waiver management’) , the Bridge classes
traverse the ontologies, sense rules that specify the conflicting
nature of the features and provide an alert stating so.

3. K-gileRE Usage illustration
A requirement analyst starts with selecting environmental

parameters and is presented with a core set of features from a
domain knowledge seed that matches the parameter selection. As
she selects to work with features, she receives recommendations
about their complementary or conflicting nature. The associated
user stories, use cases and tasks are also displayed. She can make
a selection from these, edit the elements as necessary to suit her
project needs and form a product backlog and sprints thereafter. If
interdependent tasks are included in separate Sprints, she would
receive an alert stating so and can make an informed decision
about rearranging them. As she selects a feature to modify (or to
directly include in a Sprint without modifications) she receives
recommendations regarding applicable business rules, data
models, and glossaries and so on.

Fig 2. Domain knowledge assisted agile requirements
evolution

Fig 2 illustrates the process while Table 1 highlights some of
the agile requirements related activities and the domain specific
recommendations available in K-gileRE. She can include the
recommended elements in her requirement specification and
models and act on the alerts provided by K-gileRE.

Table 1: Requirements definition and domain-specific
 Assistance

Requirements
definition
activities

Domain- specific
assistance

Example(s)

Select
environmental
parameter

A ‘domain knowledge
seed’ relevant to the
selected parameters is
presented

Parameters: Domain
(e.g. Insurance), line
of business (e.g.
life), geography (e.g.
Asia) and customer
(e.g. ABC),
Domain knowledge
seed: presents
Modules such as
Claims, Riders,
Maturity

Editing elements
such as User
Story from the
seed

Recommendations to
include Features that
would help in
implementing the user
story, adherence to
terminology, detection
of new terms and
recommendations to
include them in
glossary and data
models,
recommendations to
specify associations
between terms .

User story text: “As
an Insurer, I want to
have Claim
Intimation &
Booking feature
with automated
agreement
verification in my
insurance
Application so that
the verification
process gets
completed within 2
days.”

Select features (
from the domain
knowledge seed)
relevant to
project

Recommendations to
include business
rules/policies relevant
to features,, Business
Glossary, Business
Process, , Include
Closely Related Terms

Selected Feature:
Claim intimation
and booking
Business Terms :
Assignee, Rules:
Laws of the land
with respect to
claims, in Asia,
Policies of the
selected company
(ABC) ,conflicting
features

Form product
backlog and
sprints thereafter

Recommendations to
include inter-dependant
features in the same
sprints, Splitting of a
feature

‘Claim intimation’
and ‘Claim review
and inspection’ may
be included in the
same Sprint.

Generate
prototype

Typical screens, partial
data models , use cases

Recommendations:
Sample screens
depicting the ‘Claim
intimation’

18

Requirements
definition
activities

Domain- specific
assistance

Example(s)

activities, data
models (e.g.
consisting of Claim,
Policy, Agent)

The requirements analyst can generate structured
requirements specification documents and partial domain models
intermittently. She can refine partial data models and use them for
downstream development using industry standard model-based
development tools. The analyst can either work on the ‘text’ or
‘diagram’ mode and import/ export (to /from either text or
diagram mode) using industry standard data exchange formats
(e.g. XMI, XPDL). As she works on her textual specification of a
User story or a feature, the framework detects new business terms/
key phrases that may appear in the description. For example, if the
term ‘Customer’ appears in some feature description, K-gileRE
prompts that ‘Insured’ is a commonly accepted term. She can
make an informed decision about replacing ‘Customer’ by
‘Insured’ or retaining it as it is. K-gileRE framework supports
generation of low (UI layouts only) and hi-fidelity (UI layout
+functionality) prototypes that can be used for verification and
validation by the customer and for achieving iterative and
frequent feedback. This helps in refining requirement documents
and models incrementally.

During the requirements definition exercise, a requirement
analyst can consult experts using semantically enriched
collaborations. For example, if she starts a discussion forum on
Life insurance rules, she is presented with a set of relevant posts
available on the topic such as Rules for ‘ABC Inc’, Rules in
APAC, other experts’ opinions and so on.

K-gileRE framework starts with a seed requirement
specification that can be evolved into one that suits specific
project needs, hence the term- Requirement Evolution as opposed
to a clean slate Requirements Engineering. The framework is built
on web 2.0 architecture of participation to leverage its
collaborative aspects for requirements definition, which is
inherently a collaboration- intensive process.

Knowledge creation and selection are achieved by providing
the roles: Domain Knowledge Contributor and Domain
Knowledge Curator. We do not discuss these here.

4. Validation
Using K-gileRE framework a knowledge base comprising of

300 ‘Claims’ features, 3269 business concepts and relations, 822
business rules along with exceptions and over-rider scenarios and
a glossary explaining the concepts was created. This work was
done using the Knowledge Contributor role in K-gileRE
framework by 3 domain experts and 2 domain curators from the
Domain Competency Group of the Insurance Industry Solutions
Unit in our organization.

We used as our reference for this validation, a requirements
document the requirement analysts had prepared. The project had
a product-backlog of 170 features organized into sprints in
consultation with customers. We selected one of the Sprints
consisting of 10 features for our experiment. We compared these
with the ones present in the knowledge base incorporated in K-
gileRE. We selected 10 features that matched closely in
functionality from the knowledge base and modified these to
match the project needs (with the document as our reference)

While we did this exercise, we received several recommendations
from the K-gileRE framework. To understand the effectiveness of
the framework, we recorded recommendations related to (1)
missing elements such as business rules corresponding to a feature
(2) inconsistencies (such as conflicting features) (3) terminology
suggestions (4) corrections (such as modifications, deletions and
additions) to the ‘seed’ presented. This was done in order to
identify possible gaps in a seemingly complete requirements
document.

We accepted and acted on some of the recommendations and
had to reject some in consultation with the requirement analysts
who had actually interacted with the customers. The elements
mentioned in recommendations were displayed for inclusion and
could be edited to suit the specifics of the project. For example, if
a recommendation was regarding business rules relevant to a
selected feature, then the corresponding rules were displayed and
one could select to include some (or none) from these depending
upon the project specifics. Table 2 summarizes the observations.

Table 2: K-gileRE effectiveness

Knowledge
element
selected/
edited

Number of
recommendatio
ns displayed by
K-gileRE

Recommendation
details

Number of
recommen
dations
accepted
and acted
upon

Features 40 Complementary
features,
conflicting
features, missing
business rules,
suggestions for
Sprint formations

28

Use cases 12 Relevant
business rules

7

Business
concepts

20 Relationships
between the
concepts
suggested

15

Synonym
usage

15 Most accepted
term in place of
the synonym

12

Business
term to be
included
in project
glossary

75 Related terms to
be included along
with selected term

50

Though the experiment is small in size, it brings out the
potential strength of the method and framework. We are aware
that the results presented here are only indicative and we need to
test this approach on field in a large project. We will be taking up
this exercise next. We find that this approach has the potential to
improve several desirable properties of requirements. We realize
that the effectiveness of this approach will be largely dependent
on the quality of domain knowledge seed that we are able to
provide. Also, this method would require a mindset change for a
larger adoption in any organization. To address this need we have
adopted a hybrid approach; one that lets the requirement analysts

19

work in their natural mode – that of textual specifications and
have provided only a light-weight formalism for a semantic
assistance. The requirement analysts are not required to learn any
new visual notation, or a mapping technique or modeling tool to
be able to use K-gileRE.

It is obvious that the framework can be used in the context of
traditional requirements as well, since it also incorporates Generic
Requirements Definition Ontology. One of the suggestions from a
reviewer of this work has been that we need to explore use of
concept maps or other lightweight modeling techniques for
modeling domains. Performance and scalability of this approach
will also need to be addressed for it to be deployed in large
projects.
5. DISCUSSIONS AND CONCLUSION

An agile requirements exercise requires the whole
development team to collect requirements from the customer [7].
This is expected to reduce the effort involved in sharing
knowledge documents and also the probability of
misunderstanding. Co-located teams find it relatively easier to
acquire knowledge about a problem domain by staying in close
contact with the customers. However, geographically dispersed
teams form a roadblock to knowledge dissemination. The problem
of ‘distributed agile’ has been addressed by some development
environments [8]. But this approach solves the problem only
partially. It provides a way for the developer community to come
together and interact and also supports the ‘governance’ part of
the development exercise, but does not really equip them with the
domain knowledge edge they need. Customer is supposed to be
the domain expert who makes decisions [7]. However customer
involvement of the level that agile requirements definition
exercises advocate, is very difficult to achieve and customers
actually expect the vendor organizations to possess the necessary
knowledge in a problem domain. Requirements are to be collected
using the language of the customer and not a formal language for
requirements specification [7]. This reinforces that the
requirements analysts needs to be equipped with the knowledge of
problem domain, in order to ‘speak’ the language. If the
development team considers a requirement too complex, it is split
into simpler ones [7]. It can be easily appreciated that such a
splitting would have to be a guided exercise. For example, if a set
of inter-dependent or complementary features are ‘split ’and
included into tasks that belong to different sprints, without the
awareness that they need to function together finally, it may be
difficult to achieve the desired results. A need for providing
explicit and seamlessly incorporated domain knowledge
assistance to agile requirements is thus obvious. No agile method,
framework or tool currently supports this crucially important
need. Methods and techniques to structure domain knowledge and
use it in requirements engineering exist ([9 and references
therein], but they do not explicitly take into account the agile
context. Also, they do not include recommendation mechanisms
to achieve an effectual domain knowledge usage.

The online context- sensitive recommendations inferred from
the underlying knowledge bases in K-gileRE render a ‘paired
experience’ (analogous to pair programming [10]) while defining
requirements, at least partially substituting for a domain expert.
K-gileRE achieves Knowledge dissemination essential for agility
by facilitating semantically enriched collaborations. It combines
benefits of the meritocratic aspects of the semantic web and the
democratic aspects of web 2.0.

All agile methods strongly advocate close communication
and collaboration. Using K-gileRE, interactions among dispersed
teams happen informally, in keeping with the agile culture and
doctrines of trust and care for individuals. A virtual ‘stand up’
meeting among geographically dispersed teams can be easily
facilitated.

Agile methods advocate parsimonious documentation and

executable requirement models. K-gileRE framework facilitates
automated generation of requirements models such as editable and
evolvable business process maps, use case models and data
models that form inputs to downstream development (e.g.
generating code from data models captured as UML class
models). The domain knowledge seed provides a jump start for an
agile requirements definition. No existing agile method/tool/
framework incorporates this concept.

Scott Ambler’s recent APMM-Agile Process Maturity Model
[2] refers to 3 levels – level 1 addresses optimization needs of co-
located teams. The level 2 process incorporates governance while
level 3 takes into account scaling factors such as team size,
geographical distribution, regulatory compliance, and
environmental complexity. With reference to this model, we have
conceptualized an agile approach that is more advanced than a
‘Level 3’ agile process. Not only do we incorporate the level 3
aspects, but also explicitly provide a crucially important domain
value to an agile exercise hitherto left unaddressed by all existing
agile approaches.

6. References
[1] Ivar Jacobson, Scaling agility, http://www.ivarjacobson.com
[2] Scott Ambler, On World of agile development

http://www.informit.com/articles/article.aspx?p=1380372
[3] Scott Ambler, Agile modeling, ttp://www.agilemodeling.com
[4] Charmaz, K. Constructing Grounded Theory: a Practical

Guide through Qualitative Research, Thousand Oaks CA,
Sage, 2007

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 5, 2001

[6] S. Ghaisas, A method for identifying unobvious requirements
in globally distributed softwareprojects, Lecture Notes in
Informatics (LNI) – proc., In Proceedings of SENSE09,
Kaiserslautern, Germany, Mar. 2009, pages 297-308, 2009.

[7] Alberto Sillitti, Giancarlo Succi; Engineering and Managing
Software requirements: Chapter 14, Pages 309–326, Apr.
2006-340 2008.

[8] See for example, Rational Team Concert, http://www-
01.ibm.com/software/awdtools/rtc/

[9] Haruhiko Kaiya, Motoshi Saeki., Using Domain Ontology as
Domain Knowledge for Requirements Elicitation, Proc. 14th
IEEE International Requirements Engineering Conf. RE
2006, Minneapolis/St. Paul, Minnesota, USA, Sept 11- 15
,186-195, , 2006

[10] L Williams, R. kessler, Pair programming illuminated,
Addison Wessley, 2002

20

