
A Semantic and Collaborative Platform for Agile 

Requirements Evolution 
 

Nirav Ajmeri, Riddhima Sejpal, Smita Ghaisas 

Tata Research, Design and Development Centre (TRDDC) 

A Division of Tata Consultancy Services 

54-B, Hadapsar Industrial Estate, Pune – 411013, India 

e-mail: {nirav.ajmeri, riddhima.sejpal, smita.ghaisas}@tcs.com 

 

 
Abstract— The characteristics of web-based and community-

oriented social software are very useful in the context of 

software engineering in general and requirements engineering 

in particular. Their ease of use, transparency of 

communication, user orientation, self organization and 

emergent nature resulting from a continual social feedback are 

particularly relevant to an agile requirements definition 

exercise. The reason is that agile requirements are inherently 

meant to be collaboration-intensive. However, while the 

benefits of social platforms are valuable, they are necessary 

and not sufficient in themselves for making the exercise 

effective. The emerging social software engineering discipline is 

about enabling community-driven creation, management and 

deployment of software by applying methods, processes and 

tools in online environments. In this paper, we report our work 

on a semantic and collaborative platform that combines the 

virtues of social software principles and the semantic web 

concepts to enable knowledge-assisted agile requirements 

definition. 

Keywords- Social software engineering; collaborative and 

semantic requirements definition; semantic assistance 

I.  INTRODUCTION 

With agile development becoming increasingly 
mainstream, there is naturally a lot of emphasis in recent 
years on agile requirements. Contrary to the earlier leanings 
on an entirely code-centric development, agile veterans now 
advocate at least lightweight requirements definition in agile 
projects [1]. Requirements definition however continues to 
pose a challenge as much to agile development projects as to 
traditional ones [2]. Moreover, most large projects involve 
stakeholders from various geographies. As a result of the 
distributed teams, there is very little or no opportunity for co-
located discussions among them. This jeopardises the 
success of a project because agile requirements definition 
needs intensive collaborations among stakeholders [3]. 
Respondents to a survey cite communication as the top agile 
challenge. They express that it is extremely important that 
the distributed teams „use the same language‟ while defining 
requirements. [3].  

While the problem of collaboration has been addressed 
by various tools [4], the communication „using the same 

language‟ is difficult to achieve unless we equip requirement 
analysts with a platform that, in addition to supporting 
collaboration; also seamlessly incorporates domain 
knowledge. The knowledge should be visible, accessible and 
structured in a way to be amenable to tailoring to suit 
specific project needs.  

In the work reported here, we combine useful concepts 
from the web 2.0 stream and the semantic web stream [5, 6] 
with an aim to enable an agile requirements identification, 
discussion and definition.  We term this approach 
Knowledge assisted Agile Requirements Evolution (Kgile-
RE).    

A requirement analyst using K-gileRE is presented with a 
domain knowledge corpus comprising core user stories and 
associated knowledge elements such as business rules, 
processes, use cases, data models, prototypes and possible 
sprint plans. In collaboration with the customers, domain 
experts and other requirement analysts, she can modify and 
enhance the knowledge elements to suit her specific project 
needs. As she defines (new)/ alters (existing) knowledge 
elements (for example, identify a new use case or modify an 
existing business rule), the text is parsed for detection of new 
business terms. The detected terms are matched with 
concepts from in-built ontologies and assistance is provided 
on aspects such as synonymy of terms and complementary as 
well as conflicting nature of knowledge elements. Each new 
exercise of requirements definition thus, becomes an 
evolution of a generic structured domain knowledge corpus 
tailored to suit specific projects, as opposed to the traditional 
‟clean slate‟ approach. Hence the term Knowledge assisted 
Agile Requirements Evolution (Kgile-RE) in contrast to the 
clean slate Requirements Engineering (RE). The context -
sensitive assistance (based on the ontologies and inference 
rules that operate on them) serves as a moderation 
mechanism. This complements the collaborative 
identification, discussion and definition of requirements 
facilitated by social software engineering platform [7-10].  

The paper continues into Section II with an overview of 
the platform and a usage illustration. In Section III we 
present the results of an experiment and discuss how our 
approach combines the best of both- web 2.0 and the 
semantic web worlds.  Section IV discusses related work and 
Section V presents conclusions. 



II. THE KGILE-RE APPROACH 

In this section we introduce the Kgile-RE approach, 
present details of its model and illustrate its usage. 

A. An Overview 

The Kgile-RE platform classifies knowledge using 
ontologies and their instances [5, 6]. Semantic assistance to 
requirements definition is derived from four types of 
ontologies and inference rules. 

Based on the environmental parameters selected by the 
requirement analyst, a suitable Knowledge Corpus 
(henceforth referred to as KC) is made available to her. For 
example, a requirement analyst working on Life Insurance 
domain in Asia-pacific region for the customer ABC 
Insurance is presented with a KC different from an analyst 
working on same domain but in Europe region for another 
customer XYZ Insurance.  Here, we address the fact that 
stakeholders may need to conform to different laws of land, 
may be used to different terminologies depending on where 
they are located, and they may have different organizational 
policies even though the problem domain is the same. A 
requirement analyst is not necessarily a domain expert, yet 
needs to take into account these factors while defining 
requirements.  

Kgile-RE provides a semantic assistance to the analyst 
while evolving over the KC. The generic requirements 
definition assistance is based on the rules defined in the 
method published elsewhere [11]. The concepts in the 
Generic Requirements Ontology are mapped with concepts 
in the Agile Requirements Ontology which represents agile 
requirements context. The domain specific assistance is 
provided on aspects such as synonymy of terms, 
complementary and conflicting nature of features selected, 
relevant business rules in the selected geography, customer-
specific business policies derived from project executed for 
the same customer earlier, interactions of the selected 
domain with other domains etc. Lexical decomposition 
techniques are used to resolve requirements descriptions 
(input by users) into constituent terms.  Each detected term 
acts as pointer to concepts in the domain ontology. For 
example, the Problem Domain Ontology contains the 
„Synonym‟ relationship among certain terms. If the analyst 
uses a synonymous term, she receives a recommendation to 
replace it with the most commonly used term.  Thus, if the 
requirement analyst enters a feature- „Verify customer‟s 
details and send notification to the insured‟, the Kgile-RE 
platform will prompt her that „Customer‟ and „Insured‟ are 
synonymous terms, but „Insured‟ is the commonly accepted 
term..  Similarly if a term „Adjudicator‟ is used in the 
specification, there is an alert indicating that „Arbitrator‟ is 
the most commonly accepted term. The details of different 
ontologies and inference rules are described in section II B.   

The collaborations between various stakeholders are 
facilitated on a web2.0 platform. This architecture is selected 
because agile requirements definition is a highly interactive 
process and web2.0 provides architecture of participation. 

B. The Kgile-RE Model 

The four ontologies in K-gileRE, - „Environmental 
Context Ontology‟, “Generic Requirements Ontology‟, 
„Agile Requirements Ontology‟ and „Problem Domain 
Ontology‟ are created using RDF-OWL schema [5, 6].  
Figure 1 shows partial example instances of the ontologies 
depicted using the UML class diagram notation. 

1) Environmental Context Ontology: This ontology is 

designed to capture the environment in which software 

requirements are to be defined. For example, a requirement 

analyst may want to capture requirements for a Claims 

module of a Life Insurance application for a customer ABC 

Inc. in the Asia-Pacific geography.  The  abstractions Actor, 

Action, Domain, LineofBusiness‚ Customer, Geography,  

are  used to capture the information. 

2) Problem Domain Ontology: This ontology provides 

abstractions to capture the essence of the problem domain. 

For example, consider the following scenario- „In event of 

death of a policyholder, a beneficiary may submit a claim 

request.‟ The abstractions such as BusinessEvent, 

BusinessType, Party, BusinessAction  are used to  capture 

this information. 

3) Generic Requirements Ontology: The KC that we 

present to the requirement analyst is built around 

abstractions that capture requirements definition elements 

such as business goals, features, business processes and sub-

processes, business constraints (laws of the land, 

organizational policies) , use cases and  business entities. 

The Requirements Definition ontology provides for 

abstractions that let one capture and organize requirements 

in terms of these elements and their relationships. This 

ontology is derived from our previous work. [11  and 

references therein]. 

4) Agile Requirements Ontology: This contains 

abstractions specific to the agile requirements, e.g. 

UserStory, Feature, ProductBacklog , Sprint and so on. 

C. Examples of mappings between the elements of different 

ontologies 

 The BusinessEvents (e.g. Claim submission), 

BusinessActions (e.g. Investigate Claim) and 

BusinessDecisions (e.g. Adjugation) in the Problem 

Domain Ontology are represented as 

BusinessProcess (e.g. Claims Handling) in the 

„Generic Requirements Ontology‟. 

 BusinessGoals (e.g. Reduce Costs) in  the Generic 

Requirements  Ontology are designed to deliver 

BusinessValue, ( e.g. Profit margin) a concept in 

„Problem Domain Ontology‟ 

 BusinessConstraint (e.g. a New legislation) in the 

Problem Domain Ontology in maps to Validation 

(e.g. Verify conformance to rule) in Generic 

Requirements Ontology. 



 
Figure 1.  Example knowledge base instances and bridge classes that refer to them for context-specific recommendations 

 

 

 The BusinessParty (e.g. Insurer), BusinessObject 

(e.g. Claim), BusinessDocument (e.g. Policy) from 

the Problem Domain Ontology contribute to 

DataElement in the Generic Requirements 

Ontology. 

 Feature (e.g. Claim intimation and booking) in Agile 

Requirements Ontology maps to SubProcess (Claim 

Intimation process) in Generic Requirements 

Ontology. 

 UserStory and Task in Agile Ontology map to 

UseCase in Generic Requirements Ontology 

 
Requirement definition for each Module is divided into 

sets of Sprints to be executed in specific time frames. Each 
Sprint is composed of Features. While implementing 
BusinessConstraints need to be taken into account. Further, 
each Feature consists of UserStories captured during the 
Analyst – Stakeholder interactions. UserStories are 

associated with UseCases and TestCases. A Sprint consists 
of Tasks associated with Features and is further mapped with 
ProductBacklog and Burndown which can be displayed 
graphically in K-gileRE. A UserStory is indirectly mapped 
to BusinessProcess through the mapping between Feature 
and SubProcess. This serves as a reference for system 
testing. 

This is achieved by employing the „Bridge classes‟ and 
inference rules written in the Semantic Web Rule Language 
(SWRL). The „Bridge classes‟ specify semantic mappings of 
conclusions drawn from one ontology to elements of another 
ontology. We define rules that refer the ontology-instances 
and provide recommendations based on the integrated 
inference thereof.  This helps the requirement analyst in 
improving completeness, correctness and consistency of her 
specifications as a result of an in-built and explicit domain 
knowledge value. The recommendations may be specific to a 
singular ontology or span the four ontologies when 
necessary; in response to actions of the requirement analyst. 
For example, if a requirement analyst selects „Europe‟ as the 



geography for a „Claims Handling‟ application to be 
developed, she would be presented with features and user 
stories relevant to „Insurance Claims Processes‟ from the 
KC. As she starts to modify them in the context of her 
project, she would be presented with business rules, in the 
given geography e.g. „Claims rules in Europe‟ 
(Environmental Context Ontology and Problem domain 
Ontology). If she selects features that complement each other 
but decides to associate them with different sprints, she 
would receive a recommendation to preferably rearrange 
them in the same sprint (Problem Domain Ontology and 
Agile Requirements Ontology). If she adds a new feature to 
the Product backlog upon the Customer‟s suggestion, and it 
happens to conflict with an already selected feature in a 
given domain, she would be alerted about the inconsistency 
of her selection (singularly the Problem Domain Ontology).  
We present examples to illustrate our approach and also 
discuss how it supports agile doctrines in Section II E. 

D. Knowledge Creation Process 

The ontologies discussed above have been a result of an 
iterative and a continual process that involves (1) exploring 
available resources such as documents, web-sites, (2) 
identifying and extracting various knowledge elements from 
the resources (3) Analyzing the extracted knowledge and (4) 
representing the knowledge in the form of instances of the 
concepts and their relationships in the ontologies in a 
machine readable format. We provide the role of „Domain 
contributor‟ for this purpose.  We have attempted to partially 
automate the process and have identified the points of human 
intervention.  

K-gileRE employs a web crawler that explores various 
resources on the web and detects terms and key phrases 
specific to a given domain (such as Insurance in our 
example). We will refer to these domain specific terms as 
„Concept_instances‟ because they are instances of concepts 
in the ontologies. For example, a term as Policy is a 
concept_instance of   the concept BusinessDocument in the 
Problem Domain Ontology. The concept_instances are then 
parsed to detect similarity mappings. The techniques 
employed are lexical similarity [12], semantic similarity 
[13], direct string matching [14] and ontological structure 
based mapping [15]. We also perform „Complementarity 
mapping‟ to help identify associations between 
concept_instances. Relations like subclass, super class, 
equivalent, part-of, and concepts related with each other by 
minimum cardinality of one on both sides are considered. 
The associations between concept_instances are subject to 
refinements by human intervention.  

The Domain contributor is presented with concepts from 
the Problem Domain Ontology and is required to map the 
concept_instances with the concepts. (E.g. Insurer is a 
concept_instance of the concept BusinessParty). If there are 
some concept_instances that do not seem to be instances of 
any existing concepts in the ontology, the Domain 
contributor can identify new concepts. Thus the ontology 
itself evolves and gets refined and enhanced in the process of 
evolving the KC. After the newly identified concepts are 
reconciled with the ontology and concept_instances are 

mapped to concepts, the domain contributor is presented 
with the resultant structured knowledge and is required to 
identify associations between concepts and 
concept_instances if necessary.  The concept_instances are 
reviewed for similarity mapping again after this step.  

The detected key phrases are presented to Domain 
Contributor so that she can identify these as one of the 
following:  (1) relations between concepts (e.g. Insured has 
Policy (2) features (e.g. Claim intimation is followed by 
Claim scrutiny) (3) user stories (“As an Insurer, I want to 

have Claim Intimation & Booking feature with automated 
agreement verification….  ”) (4) use cases (e.g. Scrutinizer 
prepares a report to be reviewed by insurer) (5) business 
constraints (A claim must be made only against a valid 
policy).  If a key phrase is identified as a feature, the Domain 
contributor is asked to specify complementary feature(s) and 
conflicting feature(s) from a list of available features in the 
existing KC. She can also add new complementary/ 
conflicting features to the KC. If a key phrase is identified as 
a use case, the Domain Contributor specifies actor(s) from 
the available list or adds new ones to the KC. She also 
identified „includes‟ and „extends‟ use cases for a given use 
case from the KC or adds new ones. If a business constraint 
is identified, the features, user stories, use cases that are 
affected by the constraint are specified.  

This is followed by a machine readable representation of 
the knowledge. The structural part is captured as RDF-OWL 
schema while the behavioral part is represented by various 
semantic rules that operate on the ontologies. Both the 
schema and the SWRL rules can be specified using a UI that 
incorporates structural and behavioral patterns. For example, 
the relationships between concepts are specified by 
identifying the source concept (e.g. Policyholder), 
destination concept (e.g. Policy) and association(s) (e.g. has) 
while the rules are captured using placeholders (e.g. for if-
then-else).  

K-gileRE incorporates a process for refining the (thus) 
structured knowledge by way of directly adding 
concept_instances, associations, new concepts, rules as well.    

 The Knowledge must be reviewed for its correctness and 
currency. The role „Domain Curator‟ facilitates this. The 
activities in this role are outlined briefly below.  

Role: Domain curator 

Responsibility: Selecting and refining knowledge. 

She can  

 view submissions from domain experts 

 modify/refine the elements if necessary 

 select to accept or reject submissions 

 invite discussions and vote on submissions if 

necessary 

 finalize the elements that should reside in the 

knowledge base. 

E. Usage Illustration 

A requirement analyst starts with selecting environmental 
parameters and is presented with a core set of features from a 
KC that matches the parameter selection. As she selects to 
work with features, she receives recommendations about  



TABLE I.  REQUIREMENTS DEFINITION AND DOMAIN-SPECIFIC ASSISTANCE 

Requirements 

definition 

activities 

Domain- specific assistance Example(s) 

Select 

environmental 
parameter 

A  KC  relevant to the selected parameters is presented Parameters:  Domain (e.g. Insurance), line of business (e.g. life), 

geography (e.g. Asia) and customer (e.g. ABC), 
KC  presents  Modules such as Claims, Riders, Maturity 

Editing elements  

such as User Story 

from the KC 

Recommendations to include Features that would help 

in implementing the user story, adherence to 

terminology, detection of new terms and 
recommendations to include them in glossary and data 

models, recommendations to specify associations 

between terms . 
 

User story text: “As an Insurer, I want to have Claim Intimation & 

Booking feature with automated agreement verification in my Claim 

Handling module of Insurance application so that the verification process 
gets completed within 2 days.” 

Features:  Claim intimation and booking, Claim review and inspection 

New Terms detected:  Verification, Recommended synonym : Scrutiny 

Select features 

( from the KC) 
relevant to project 

Recommendations to include  business rules/policies 

relevant to features,, Business Glossary, Business 
Process, , Include Closely Related Terms 

Selected Feature: Claim intimation and booking 

Business Terms : Assignee, Rules: Laws of the land with respect to 
claims, in Asia,  Policies of the selected company (ABC) ,conflicting 

features 

Form product 
backlog and sprints 

thereafter 

Recommendations to include inter-dependant features 
in the same sprints, Splitting of a feature 

Recommendations: 

 „Claim intimation‟ and „Claim review and inspection‟ may be included in 

the same Sprint. 

 

Generate prototype Typical screens, partial data models , use cases Recommendations: 

Sample screens depicting the „Claim intimation‟ activities, data models 

( e.g. consisting of Claim, Policy, Agent) 

 
their complementary or conflicting nature. The associated 
user stories, use cases and tasks are also displayed. She can 
make a selection from these, edit the elements as necessary 
to suit her project needs and form a product backlog and 
sprints thereafter. If interdependent tasks are included in 
separate Sprints, she would receive an alert stating so and 
can make an informed decision about rearranging them. As 
she selects a feature to modify (or to directly include in a 
Sprint without modifications) she receives recommendations 
regarding applicable business rules, data models, and 
glossaries and so on.  

Table I highlights some of the agile requirements related 
activities and the domain specific recommendations 
available in K-gileRE. She can include the recommended 
elements in her requirement specification and models and act 
on the alerts provided by K-gileRE.  

1) Semantically enabled collaboration: During each of 

the above activities, she can start discussions in the form of 

informal chats on the selected knowledge elements with her 

colleagues, experts and seek their opinion on her selections 

from and refinements on the KC. She can post topics for 

discussions on semantically enabled forums and subscribe 

to alerts when others post their opinions on topic of her 

current interest.  
For example if she selects the following rule to be 

included in her specification: 
„If no. of years of premium paid from the date of 

commencement is equal to 4 years, then policy acquires paid 
up value‟ 

But she is not sure if this is valid in India, she can start a 
forum to discuss this with experts. Upon initiating a forum, 
she will be presented with a set of relevant posts available on 

the topic. For example, she can view posts related to validity 
of rules for Life Insurance, Rules for ABC Inc, Rules for 
India, posts by other experts who contributed Life Insurance 
rules, rules regarding  related terms such as „date of 
commencement‟ „premium‟ and select the most suitable 
thread of discussions in terms of topic, author geography and 
so on. She can start an entirely new forum as well, if none of 
the presented ones match her need. 

2) Generating and refining artifacts iteratively: The 

requirements analyst can generate structured requirements 

specification documents intermittently. She can view 

Sprints, Product backlogs, Burn down charts. She can 

populate  data models using modeling tools.. The analyst 

can either work on the „text‟ or „diagram‟ and import/ 

export to /from either format. This helps in refining artifacts 

incrementally.  
Starting with a KC for „Death claim process‟, we can 

thus evolve a specification that suits a given project. The 
evolution is an assisted exercise that helps in adding to or 
modifying the KC by providing context-sensitive help to a 
requirement analyst.  

It is relevant here to add that not all of the domain 
knowledge is formalizable in terms of ontologies and the 
semantic web rule language (SWRL). We therefore use a 
combination of formalization and human intervention to 
represent knowledge and enable its reuse during agile 
requirements definition. Let us consider a small subset of 
activities and the corresponding K-gileRE responses as an 
example. Table II illustrates parts of domain –specific 
assistance that is based on ontologies entirely and parts that 
require human intervention. 

 



TABLE II.  DOMAIN SPECIFIC ASSISTANCE ENABLEMENT -  FORMALIZATION+ HUMAN INTERVENTION 

Requirements definition 

activities 

Domain- specific assistance Examples Formalized/Human 

intervention 

Remark 

Select Project Environment 

Parameter Set 

1.List of Available Domains 

from Knowledge Repository 

is presented 

2. List of Available 

Geographies from 

Knowledge Repository is 
presented 

1. Insurance, Banking, 

Healthcare... 

 
2. Europe, Asia-Pacific... 

Formalized Environment Ontology 

+SWRL 

Select Domain List of related Line of 

Business is presented. 

Life Insurance, Auto 

insurance... 

Human intervention based Requirement Analyst is 

required to select relevant 

Line of Business as per her 
project needs. 

Select Geography List of related Customers is 

presented. 

ABC Life, XYZ Auto... Human intervention based Requirement Analyst is 

required to select the 

appropriate Customer as per 

her project needs. 

Select  Customer A KC relevant to selected 
parameters is presented 

 

Claim Handling Formalized Ontology +SWRL 

 

III. RESULTS AND DISCUSSIONS 

In this section we present an example based on the results 
of an experiment and discussions. 

A. Expirement 

Using K-gileRE framework a  knowledge base 
comprising of 300 „Claims‟ features, 3269 business concepts 
and relations, 822 business rules along with exceptions and 
over-rider scenarios and a glossary explaining the concepts 
was created. This work was done using the „Knowledge 
Contributor‟ role by 3 domain experts and 2 domain curators 
collaboratively from the Domain Competency Group of the 
Insurance Industry Solutions Unit (ISU) in our organization. 

We used as our reference for this validation, a 
requirements document the requirement analysts had 
prepared for a „Claims‟ application. The project had a 
product-backlog of 170 features organized into sprints in 
consultation with customers. We selected one of the Sprints 
consisting of 10 features for our experiment.  We compared 
these with the ones present in the knowledge base 
incorporated in K-gileRE. We selected 10 features that 
matched closely in functionality from the knowledge base 
and modified these to match the project needs (with the 
document as our reference) While we did this exercise, we 
received several recommendations from the K-gileRE 
framework. To understand the effectiveness of the 
framework, we recorded recommendations related to (1) 
missing elements such as business rules corresponding to a 
feature (2) inconsistencies (such as conflicting features) (3) 
terminology suggestions (4) corrections (such as 

modifications, deletions and additions) to the KC presented. 
This was done in order to identify possible gaps in a 
seemingly complete requirements document. 

We accepted and acted on some of the recommendations 
and had to reject some in consultation with the requirement 
analysts who had actually interacted with the customers. The 
elements mentioned in recommendations were displayed for 
inclusion and could be edited to suit the specifics of the 
project. For example, if a recommendation was regarding 
business rules relevant to a selected feature, then the 
corresponding rules were displayed and one could select to 
include some (or none) from these depending upon the 
project specifics. Table III summarizes the observations. 

Though the experiment is small in size, it brings out the 
potential strength of the method and framework. We are 
aware that the results presented here are only indicative and 
we need to test this approach on field in a large project. We 
will be taking up this exercise next. We find that this 
approach has the potential to improve completeness, 
correctness and consistency of requirements. We realize that 
the effectiveness of this approach will largely depend on the 
quality of KC that we would be able to provide. 

B. Discussions 

While adopting the social software principles to a 
specialized field such as requirements definition, we take 
into account the following seemingly contrasting aspects in 
the context of our community of practice comprising 
requirements analysts (consumers of knowledge), domain 
experts (contributors and curators of knowledge), project 
managers and customers. 



TABLE III.  KGILRE-RE EFFECTIVENESS 

Knowledge element 

selected/ edited 

Number of recommendations  

displayed by K-gileRE 

Recommendation details Number of recommendations 

accepted and acted upon 

Features   40 Complementary features, conflicting features, 

missing business rules, suggestions for Sprint 

formations 

28 

Use cases 12 Relevant  business rules 7 

Business concepts 20 Relationships between the concepts suggested 15 

Synonym usage 15 Most accepted term in place of the synonym 12 

Business term to be 
included in  project 

glossary 

75 Related terms to be included along with selected 
term 

50 

 

1) Taxonomies and Folksonomies: We use four different 

ontologies to render a structure to the requirements 

definition exercise and to provide context-sensitive 

assistance- (1) Environmental context ontology (2) Generic 

Requirements ontology (3) Agile requirements ontology  

and the (4) Problem Domain ontology.  The meta- model for 

each of these presents a distinct context for classification of 

requirements elements. For example Environmental Context 

Ontology is a formal specification of ethnic groups to which 

the user belongs. It consists of concepts like Domain, Line 

of business, Geography, Customer and Project type. The 

requirements definition ontology is based on the criteria for 

completeness, consistency and correctness of requirements 

specification. This is derived from experiences and best 

practices in projects.  The domain ontology refers to 

abstractions in a given problem domain such as banking, 

insurance and therefore contains business concepts, their 

inter-relations and constraints. It is quite obvious that the 

ontologies are constructed hierarchically, in a top-down 

way. In each of this category, apart from the pre-defined 

taxonomy, a user is at liberty to identify new elements. This 

constitutes the folksonomy which evolves bottom-up in a 

community-driven way.  If their usage in the community of 

practice (in this case, stakeholders in requirements 

definition exercise) is substantial, the elements can be 

absorbed into the taxonomy. This decision however is made 

by the knowledge curator in consultation with the 

community of practice. 

2) Self Organization and moderation: A wiki-like 

platform for entering, editing requirements and for 

deliberating on them was highly suitable. However unlike 

the highly democratic communications which the typical 

social networking mechanisms (e.g. blogs) allow, K-gileRE 

could not do away entirely with supervision and moderation 

by requirements experts. The moderation however, had to 

be in the form of suggestions, alerts and a non-intrusive 

assistance. We therefore built in a semantic domain 

knowledge assistance mechanism. As a requirements analyst 

details a requirement, he receives soft alerts regarding 

conforming to a common and accepted terminology of the 

specific domain and/or environment in which he is working, 

complementary knowledge elements such as laws of the 

land that apply to the functionality he is illustrating, 

conflicting nature of certain functionalities, SDLC specific 

artifacts such as relevant use cases and test cases for the 

functionality. The decision to modify requirements by 

acting as per the alerts or ignoring them is thus an informed 

one. K-gileRE also provides a cumulative report on 

inconsistencies, variations and over-riders (from the 

reference domain knowledge base) in the requirements 

specification instance created by the users for their specific 

projects. 

3) Social feedback: The platform provides for voting 

and comments on requirements by all stakeholders.  We 

realized that opinions of stakeholders such as domain 

experts need to be taken into account with a higher weight 

than less experienced stakeholders in an organization. Thus 

voting was not found to be the best way to decide for 

example: whether a given requirement would be considered 

in the first iteration or in subsequent ones. This seemingly 

defeats the purpose of a „social „ platform, but the 

transparency of discussions bears down heavily on such 

decisions and since the comments and discussions are for all 

to see, no single heavy-weight stakeholder can unfairly 

overrule valid suggestions made by even junior 

stakeholders, or they would face pressure from other experts 

in the community. We designed various suitable roles for 

this purpose with a view to incorporate suitable weights for 

respective stakeholders. For example a „Domain expert‟ role 

has a higher weight than a „Requirement analyst‟ role, but a 

lower weight than a „Domain curator‟ role. 

4) More than just a Wiki: The platform provides for 

meaningful collaborations that are semantically enriched as 

explained earlier in the Section on usage illustration.  In the 

context of agile requirements, we note that  it is important to 

produce executable requirements models [1]  in addition to 

documents. It is possible to derive from our platform; 

requirements models such as editable and evolvable 

business process maps, use case models and domain models. 

These can be imported into tools that incorporate industry 

standard data exchange formats (e.g. XPDL for business 

process models) and utilized in downstream development 

(e.g. generating code from domain models captured as UML 

class diagrams). A structured requirement specification 

document can be generated from the user inputs as well. 



IV. RELATED WORK 

Lohman et al [7] highlight the aspects we discuss in the 
previous section.  They have noted that supervision and 
moderation by requirements experts remains crucial to a 
project‟s success.  Their Softwiki platform achieves 
combination of concepts related to community driven 
requirements acquisition and management and semantic 
structuring of knowledge. They mention that the moderation 
should be unobtrusive. Kgile-RE  platform  provides for  this 
moderation at  two levels (1)  At the requirement analyst 
level,  Kgile-RE  gives  just-in-time alerts and 
recommendations. This context sensitive assistance is based 
on the underlying knowledge base comprising of four 
different ontologies and rules. It explicitly incorporates agile 
requirements related concepts and rules to enable the 
assistance (2) At the Domain contributor level, the context 
sensitive assistance incorporates domain analysis related 
rules. Additionally, the domain curator role,is empowered to 
select, moderate and refine the contribution in consultation 
with the community of experts.  

Anna Hanneman et al [8] compare identification of 
requirements with and without the web 2.0 style elicitation 
support in their research. Their Bubble Annotation Tool 
(BAT) provides for “enjoyable and intuitive interactions with 
the community” collaborating in the requirements 
engineering processes. They do not however provide any 
means for semantic and domain specific assistance or agile 
requirements.  

Ankolekar et al [16] have stressed that the semantic web 
and web 2.0 complement each other and that in fact both 
communities need elements from the other‟s technologies to 
overcome their own limitations. They emphasize that 
semantic technologies bear a great potential of providing a 
robust and extensible basis for Web 2.0 applications. 

Seater et al [17] propose an approach based on problem 
frame concept. The problem frame enables depiction of 
properties and connections of the environment to which the 
problem is related. But the requirement analyst himself has 
to come up with the domain assumptions („breadcrumbs‟) 
and thus requires domain expertise.   

Kaiya et al [18] discuss use of domain ontologies for 
verification of inconsistencies. In their approach, 
requirements concepts are extracted using NLP techniques 
and the analyst is required to map them to the domain 
ontologies. The completeness or consistency of requirements 
specification is verified based on the extent of the mapping. 
Their work does not take into account the agile requirements 
context explicitly. The framework does not support 
collaborative aspects of requirements engineering either.   

Our approach presents a semantic and collaborative 
requirements definition method and platform that uses KC 
instead of a clean slate as a point of departure. We have 
seamlessly incorporated various useful aspects form the web 
2.0 and the semantic web streams to collaboratively define 
requirements and provide a context-sensitive just-in-time 
assistance based on the four knowledge contexts. 

V. CONCLUSION 

Kgile-RE bridges the democratic aspects of web 2.0 
platform and the semantic web concepts. While collaborative 
identification, discussion and definition of requirements 
facilitated by web 2.0 are valuable, we cannot entirely do 
away with moderation in such a highly specialized exercise. 
The context- sensitive assistance mechanism based on 
semantic web concepts serves as a moderation mechanism as 
well. The decision to modify requirements by acting as per 
the alerts or ignoring them is an informed one. The four 
ontologies provide pre-defined taxonomies to facilitate 
classification of requirement elements. Apart from the pre-
defined taxonomies (which are built hierarchically top-down 
way), a user is at liberty to identify new elements. This 
constitutes the folksonomy which evolves bottom-up.  If 
their usage in the community of practice (in this case, 
stakeholders in requirements definition exercise) is 
substantial, the elements can be absorbed into the taxonomy. 
Moreover, K-gileRE platform is not just a Wiki. It provides 
for a semantically enriched collaboration that would foster 
meaningful and focussed discussions on topics in 
requirements engineering in general and problem domain 
such as Insurance in particular. The platform also provides 
for automated generation of requirements models that form 
inputs to downstream development (e.g. generating code 
from domain models captured as UML class diagrams) and 
documents.  

The framework achieves Knowledge dissemination 
essential for agility by facilitating semantically enriched 
collaborations. It combines benefits of the meritocratic 
aspects of the semantic web and the democratic aspects of 
web 2.0. All agile methods strongly advocate close 
communication and collaboration. Using the collaboration 
mechanisms in K-gileRE, interactions among dispersed 
teams happen informally, in keeping with the agile culture 
and doctrines of trust and care for individuals. A virtual 
„stand up‟ meeting among geographically dispersed teams 
can be easily facilitated 

Though the work presented here focuses on agile 
requirements, our interactions with project teams in our 
organization indicate that the knowledge reuse facilitated by 
K-gileRE is applicable generically to projects that need 
domain knowledge assistance.  What we do however want to 
stress on is that we explicitly map domain knowledge 
elements onto agile requirements elements to incorporate a 
semantic assistance into the process of agile requirements. 
The knowledge reuse thus becomes an inherent part of the 
agile requirements exercise, an aspect not taken up so far by 
other existing agile methods and frameworks.  

We find that this approach has the potential to improve 
several desirable properties in a requirement specification. 
This is brought out by our initial experiment. We realize that 
this approach will depend largely on the quality of KC that 
we are able to provide and that this would require a mindset 
change for a larger adoption in any organization. 

We have taken up large-scale exercises involving 
knowledge creation, moderation and consumption using 
Kgile-RE in Insurance (life and P&C) and Investment 



Banking domains.  The empirical results will be published 
soon. 

ACKNOWLEDGEMENTS 

We would like to thank V.S. Sivakumar of the Insurance 
ISU (Industry Solution Unit) of Tata Consultancy Services 
for many meaningful discussions and suggestions on the 
topic of knowledge reuse. We also thank the anonymous 
reviewers of this paper for their constructive suggestions. 

REFERENCES 

[1] Scott Ambler on 

http://searchsoftwarequality.techtarget.com/news/article/0,289

142,sid92_gci1277064,00.html 

[2] http://searchsoftwarequality.techtarget.com/generic/0,295582,

sid92_gci1351096,00.html 

[3] http://searchsoftwarequality.techtarget.com/news/article/0,289

142,sid92_gci1277064,00.html 

[4] http://www-01.ibm.com/software/rational/jazz/ 

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The         Semantic 

Web. Scientific American, 5, 2001 

[6] Nigel Shadbolt, Tim Berners-Lee and Wendy Hall, “The 

Semantic Web Revisited”;http://eprints.ecs.soton. 

ac.uk/12614/1/ Semantic_Web_Revisted.pdf. 

[7] S.  Lohmann, S. Dietzold, P.  Heim and N Heino, A web 

platform for Social Requirements Engineering, LNI, Proc. 

Software Engg, Workshopband, 29th IEEE Conf. on Decision 

and Control, San Francisco, CA, 1990, 500-506. Lecture 

Notes in Informatics (LNI) – proceedings of SENSE 09 

Workshopband, Series of the Gesselshaft fur Informatik (GI),  

Bonn,  2009 , Vol 150, 309-315 

[8] A. Hanneman, C. Hocken and R. Klamma, Community driven 

Elicitation of  Requirements with Entertaining Social 

Software, LNI, Proc. Software Engg, Workshopband, 29th 

IEEE Conf. on Decision and Control, San Francisco, CA, 

1990, 500-506. Lecture Notes in Informatics (LNI) – 

proceedings of SENSE 09 Workshopband, Series of the 

Gesselshaft fur Informatik (GI), Bonn, 2009, Vol 150, 317-

328. 

[9] B. Decker, E. ras, J. Rech, P. Jaubert, M. Rieth, Wiki based 

stakeholder participation in Requirements Engineering, IEEE 

Software, 24(2), 2007, 28-35 

[10] J. Whitehead, Collaboration in Software Engineering: A 

roadmap,  Proc.IEEE, Future of Software Engineering, 2007, 

214-225 

[11] S. Ghaisas, A method for identifying unobvious requirements 

in globally distributed software projects, Software 

Engineering in Social Software Environments., Lecture Notes 

inInformatics (LNI) - proceedings, Series of the Gesselshaft 

fur Informatik (GI), Bonn 2009, Vol.150 edited by Munch J. 

and Liggesmeyer P., Mar. 2009, pages 297-308. In Proc. 

SENSE09, Fraunhofer Institute Experimental Software 

Engineering, Kaiserslautern, Germany 

[12] Kiu CC, Lee CS, OntoDNA: Ontology Alignment Results for 

OAEI 2007, In proc. 6th International Semantic Web 

Conference(ISWC) and 2nd Asian Semantic Web Conference 

(ASWC), 196-205, 2007.  

[13] Dao, Simpson. Measuring Similarity between Sentences. 

http://wordnetdotnet.googlecode.com/svn/trunk/Projects/Than

h/Paper/WordNetDotNet_Semantic_Similarity.pdf 

[14] Ghazvinian A, Noy N.F., Jonquet C., Shah N., Musen M.A., 

What four million mappings can tell you about two hundred 

ontologies?, LNCS, Vol. 5823, 229-242, 2009 

[15] http://www.w3.org/TR/owl-ref/ 

[16] A Ankolekar, M. Krotzsch, T. Tran, D. Vrandecic, The two 

cultures- mashing up web 2.0  and the semantic web, Proc., 

WWW2007, May 2-8 2007, Banff, Alberta, Canada, 825-834 

[17] R. Seater, D. Jackson, R. Gheyi, Requirements progression in 

problem frames: Deriving Specifications from Requirements, 

Requirements Engineering Journal (RIJ), 12(2) 2007, 77-102. 

[18] Haruhiko Kaiya, Motoshi Saeki, Ontology based 

Requirements Analysis: Lightweight Semantic processing 

Approach, Proc., International Conference on Quality 

Software, QSIC 2005. 

 

 

 

 

 

http://searchsoftwarequality.techtarget.com/generic/0,295582,sid92_gci1351096,00.html
http://searchsoftwarequality.techtarget.com/generic/0,295582,sid92_gci1351096,00.html
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1277064,00.html
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1277064,00.html
http://www-01.ibm.com/software/rational/jazz/
http://wordnetdotnet.googlecode.com/svn/trunk/Projects/Thanh/Paper/WordNetDotNet_Semantic_Similarity.pdf
http://wordnetdotnet.googlecode.com/svn/trunk/Projects/Thanh/Paper/WordNetDotNet_Semantic_Similarity.pdf

