
Natural Web Interfaces
Editor: Munindar P. Singh • m.singh@ieee.org

2 Published by the IEEE Computer Society 1089-7801/16/$33.00 © 2016 IEEE IEEE INTERNET COMPUTING

W illiam Prosser, in his classic paper,
describes how privacy involves diverse
aspects centered on the idea of being let

alone (p. 389).1 We view privacy as crucial to the
user experience (UX) in a sociotechnical setting,
wherein users engage socially through informa-
tion technology. In previous work, we addressed
privacy by limiting information disclosure to
location-based (and not necessarily social) appli-
cations by computing context at an abstract level
that enhances usability but hides details.2

Here, we approach privacy from the stand-
point of engineering social applications, wherein
interactions among users are central and thus
privacy matters for more than just disclosure.
Specifically, we investigate how to develop appli-
cations that deal with two foundational aspects
of privacy.1 Intrusion into someone’s solitude,
which originally meant physical intrusion into a
person’s space, we also take to include making
a noise or otherwise interrupting someone’s life.
Disapprobation of someone’s peers would mean
loss of face, which can arise not only with a per-
son’s inner circle but also with strangers looking
askance. Avoiding intrusion and disapprobation
is overshadowed in computing research by con-
cerns of information leakage — arguably, infor-
mation leakage involves confidentiality more
than privacy per se.

A social application caters to multiple users:
primary users, who directly interact with it, and
secondary users, who might not directly interact
with the application but are affected by it. The
lowly ringer manager on a cell phone is a social
application: its primary user is the phone’s owner

and the secondary users are callers and those within
earshot. The ringer manager helps the owner set a
ringer mode (loud, silent, or vibrate) for incoming
phone calls. A rigid design yields poor privacy and
experience: The phone might ring loudly when the
owner is in an important meeting (causing a nui-
sance) or stay silent even when the owner’s spouse
calls in an emergency (losing value).

Traditionally, UX design concentrates on pri-
mary users and disregards secondary users.3 This
attitude can lead to suboptimal experiences for
both primary and secondary users, specifically,
because privacy presupposes interaction between
users.

Intrusion is a prominent aspect of privacy in
the ringer scenario: Does the caller intrude upon
the callee and does the callee intrude upon people
nearby (by taking a call or by letting a phone
ring)? The UX for all concerned parties depends
upon whether the phone rings: the caller could be
stymied by a phone set on silent and the privacy
of the other users might be violated otherwise.
Also, improper ringer settings expose another
privacy risk — that of disapprobation, causing
the owner embarrassment. Imagine if your phone
went off during a classical concert!

Social Expectations
Producing privacy-enhancing controls is non-
trivial. Setting a fixed ringer mode for all incom-
ing calls (as is common today) ignores secondary
users, but asks the owner to anticipate contexts
and secondary users. But setting appropriate ringer
policies is too complex to be viable. Accordingly,
we adopt the idea of modeling social interactions.

Engineering Privacy
in Social Applications
Pradeep K. Murukannaiah, Nirav Ajmeri,
and Munindar P. Singh • North Carolina State University

Experience with a social application depends crucially upon how it supports

or interferes with the users’ social expectations. Because privacy is central to

the user’s experience, the authors introduce Danio, a methodology based on

modeling users’ expectations in various contexts.

Engineering Privacy in Social Applications

MaRCh/aPRIl 2016 3

Katja Battarbee4 motivates co-experi-
ence as a seamless blend of UX and
social interactions.

However, social interaction is a
loose concept. We propose instead to
capture users’ social expectations of
others as central to delivering an opti-
mal experience. For example, the ringer
manager’s UX depends on whether
the phone owner meets their spouse’s
expectation by answering important
calls, which in turn might depend on
whether the ringer manager lets the
phone ring. Thus, we seek to systemati-
cally incorporate social expectations in
the UX as geared toward privacy.

Broadly, looking beyond privacy,
social expectations and their influences
are abundant in real-life interactions.
Expectations arise both explicitly (as in
text-based interactions) and implicitly
(as via gestures). Yet, current UX tech-
niques largely disregard expectations.
How can we computationally represent
and reason about expectations?

Sarah Spiekermann and Lorrie Faith
Cranor5 describe a “joint sphere” of
privacy responsibilities involving data
senders and recipients. Social expecta-

tions fit into this sphere. Spiekermann
and Cranor identify the key engineer-
ing challenge in this sphere as provid-
ing individuals’ control over access to
themselves. In contrast, we argue that
a key challenge in this sphere, perhaps
more important than control, is to
engineer solutions where both senders
and recipients are accountable to each
other and thus vested in enhancing
each other’s privacy.

We adopt two interrelated compu-
tational abstractions to capture social
expectations. First, a norm character-
izes a user’s expected (“normal”) behav-
ior from the perspective of another
user.6 Second, a sanction characterizes
a user’s response to another user’s satis-
faction or violation of a norm.7,8 Norms
and sanctions arising in an applica-
tion’s context can be computationally
represented and reasoned about.

Figure 1 captures a model in which
a user’s actions in a usage context
influence social expectations, and both
contexts and expectations influence
the user experience. The application
designer specifies both contexts and
social expectations. This model empha-

sizes contextual design — an important
part of the well-known user-centered
design process. Whereas traditional
design emphasizes the primary user’s
actions and contexts, this model addi-
tionally captures how a primary user’s
action might affect another (hence, sec-
ondary) user. A consequence of social-
ity is that the context helps determine
whether a user is primary or secondary.

The lower part of this model cap-
tures social expectations. A primary
user’s action, within a context, might
satisfy or violate a norm directed
toward a secondary user, leading the
latter to sanction (reward or punish)
the primary user.

Based on this information, we
understand — in a manner largely
unique to our approach — that a norm
is a directed normative relationship.
(For the remainder of this article, we
use “norm” in this sense.) A norm
helps capture application require-
ments in terms of what one stake-
holder expects from another.6 A norm
is directed from a subject to an object
and is constructed as a conditional
relationship involving an antecedent

Figure 1. A conceptual model showing how a primary user’s action within a certain context affects the secondary user,
and how contexts and expectations influence the user experience. A traditional design emphasizes only the primary users’
actions and contexts, but this model additionally captures how a primary user’s action might affect another (secondary) user.

Context

Social expectation

Primary
user

Secondary
user

ActionPerforms

Norm Sanction

Affects

Application
designer

User
experience

In�uences

In�uencesIn�uences

Re�nesResults inSatis�es or violatesRe�nes

Speci�es

Speci�es

Natural Web Interfaces

4 www.computer.org/internet/ IEEE INTERNET COMPUTING

(which brings the norm in force) and
a consequent (which brings the norm
to satisfaction). This representation
yields clarity on who’s accountable to
whom. A norm follows this template:

N(SUBJECT, OBJECT, antecedent,
consequent).

Each stakeholder is autonomous,
meaning it can violate any norm.
However, an application — and broadly
speaking, society — operates under the
assumption that most people respect
these norms. How can we coordinate
actions toward a predefined or an
emergent social order? A sanction7,8
specifies the consequences its subject
faces from its object for satisfying or
violating a norm, thereby promoting
compliance. We write a sanction as

S(SUBJECT, OBJECT, antecedent,
consequent).

A positive sanction rewards or encour-
ages compliance and a negative sanc-
tion penalizes or discourages violation.
Sanction types include the following:
autonomic, where the consequence
of the norm violated or satisfied is
in itself a sanction; material, often
financial; social, essentially, affecting
a reputation; and psychological, such
as guilt.8

Understanding an application in
terms of social expectations yields
key payoffs in terms of privacy.

•	 Personalization. Decentralized enact-
ment facilitates modeling software
functionality — independently of
implementation — that respects
users’ (subjective) privacy.

•	 Disclosure and control. Explicit
social expectations advise a user
on precisely what information to
provide others, thereby avoiding
unnecessary disclosure.

•	 Accountability. Each norm deter-
mines who’s accountable to whom,
in what context, and what the con-
comitant sanctions are, thereby
helping to operationalize the expec-
tations to promote privacy.

Our approach presumes represent-
ing context and expectations. At one
extreme, a designer could produce a
complete specification; at the other,
contexts and expectations could emerge
at runtime through active usage. We
adopt a pragmatic middle-ground solu-
tion: the designer formulates an incom-
plete specification, which users refine as
they interact.

Danio
Keeping all of these criteria in mind,
here we propose a software engineering

methodology, called Danio (after the
fish), for systematically incorporat-
ing social expectations into applica-
tion design by extending Tropos9 and
Xipho.10 As Figure 2 shows, Danio’s
key phases are modeling actors, con-
texts, and expectations.

Modeling Actors
Actor modeling identifies prospective
users and their requirements. Danio
adopts the following modeling con-
structs from Tropos.9

An actor is a user role or software
agent.

A goal is an actor’s strategic inter-
est that the application would serve.
Goals can decompose into subgoals.

A plan abstracts actions to satisfy
a goal.

In the ringer scenario, the actors are
the CALLEE (owner), CALLER (owner’s
spouse), CALLEE’S NEIGHBOR (meet-
ing participants), and RINGER (the soft-
ware). The CALLEE’s goals include don’t
disturb neighbors. The RINGER’s plans
include set silent mode.

Modeling Context
We identify contexts in which actors act
and interact. However, context is an all-
encompassing notion. Which contexts
are relevant to a given application?

We understand context as inher-
ently related to the actors’ goals and

Figure 2. Danio summarized. The methodology helps systematically incorporate social expectations into application design.

1. Identify actors (primary and secondary users; system components)

2. Identify each actor’s goals and plans pertinent to the application

3. Identify contexts in which actors pursue goals and execute plans

4. Identify applicable norms between actors in each context

5. Identify sanctions for satisfying and violating norms

6. Identify and resolve potential con�icts between norms

Actor modeling

Context modeling

Social expectation
modeling

Engineering Privacy in Social Applications

MaRCh/aPRIl 2016 5

plans,10 which provides a systematic
basis for eliciting relevant contexts.
Specifically, situations such as the
following provide grounds for elicit-
ing contexts.

Conflicting goals. In this scenario, an
actor can’t satisfy all of the goals. For
example, the CALLEE’s goals answer
important calls and don’t disturb
neighbors conflict. This choice might
depend upon contextual elements
such as locale as well as the CALLEE’s
relationships with the CALLER and
NEIGHBOR.

Multiple plans to satisfy the same
goal. For example, the RINGER’s plans
set silent mode and set vibrate mode
can each satisfy the goal don’t disturb
neighbors. The RINGER might choose
at most one of these plans at runtime.
Its choice could depend upon the CAL-
LEE’s ambiance.

Such scenarios help tailor the
generic context model to an applica-
tion-specific model. For example, the
RINGER’s context model can include
the CALLEE’s relationships with the
CALLER and NEIGHBOR. Some aspects
of context are user-specific and can be
elicited from users at runtime via a con-
textual middleware.2

Modeling Social Expectations
We model social expectations between
actors. Whereas Tropos and Xipho model
broad-brush dependencies between
actors, we derive a detailed specification
of expectations in terms of norms and
sanctions involving actors, actions, and
contexts.

Norms. For each actor, we iden-
tify norms where the actor is the
SUBJECT and another actor is the
OBJECT. The context in which the
norm applies can be captured in its
antecedent and the expected behavior
in its consequent.

Sanctions. For each norm, we iden-
tify the sanctions that apply when

it’s satisfied or violated. The sanc-
tion’s SUBJECT and OBJECT are the
corresponding norm’s OBJECT and
SUBJECT, respectively. Its antecedent
captures the status of the norm and
its consequent the sanctioning action.

The following are examples of
norms and sanctions in our example.

•	 The CALLEE is committed to his
spouse for answering the spouse’s
calls:
C1 (CALLER, CALLEE, relationship
= spouse ∧ call, answer call).

•	 The CALLEE is prohibited by his
coworkers from answering calls in
meetings:
P1 (CALLER, NEIGHBOR, relation-
ship = coworker ∧ place = meet-
ing ∧ call, answer call).

•	 Satisfaction of C1 increases the
trust (positive sanction) of the
spouse toward the CALLEE:
S1 (CALLEE, CALLER, C1 = satis-
fied, increase trust).

•	 Violation of P1 yields a bad repu-
tation (negative sanction) for the
CALLEE among his coworkers:
C2 (NEIGHBOR, CALLER, P1 =
violated, bad-mouth).

Additional norms can be defined,
limited only by the social context. For
example, we might state that a univer-
sity librarian has the power to declare
reading rooms as quiet or as places
where discussions are allowed.

Norms might conflict, as when the
phone owner receives a call from their
spouse during a meeting with cowork-
ers. In this case, antecedents of both C1
and P1 hold, but satisfying one norm
means violating the other. A designer
must identify such conflicts and elicit
additional contextual information to
prioritize among the conflicting norms.
Our conflict-resolution methodology,11
based on an analysis of competing
hypotheses, can guide a designer in
prioritizing the alternatives.

Preliminary Evaluation
We conducted a developer study to
evaluate our methodology. We asked
subjects (34 graduate computer science
students, working solo) to develop a
ringer manager. We split the subjects
into two groups: control (n = 16) and
Danio (n = 18), providing identical
application requirements to each, but
providing our methodology (treat-
ment) only to the Danio subjects. All
subjects recorded their development
time during the study and completed
a post-survey.

Development Time
Figure 3 shows boxplots of times
expended by subjects during different
development phases. The diamond
dots indicate mean values and the
other dots indicate outliers.

We observed that the Danio subjects
took slightly longer than the control
subjects to understand requirements
and prepare a specification. However,
Danio subjects, on average, spent 17.8
and 11.4 percent less time than control
subjects in implementing and testing
the application, respectively. We posit
that Danio’s systematization of incor-
porating context, which costs extra
time early, pays off during implemen-
tation and testing.

Post-Survey Data
We asked control subjects the extent
to which a methodology would help
them in developing a social applica-
tion. We used a Likert scale of one (not
helpful) to seven (extremely helpful)
for each question; x� are mean values.
The subjects responded as follows:
that a methodology would be helpful
for understanding requirements (x� =
5); implementation (x� = 4.5); testing
(x� = 5.5); and specifications (x� = 3).

Surprisingly, control subjects felt
that a methodology (which we didn’t
provide to them) would be least help-
ful for application specifications,
whereas Danio subjects felt a method-
ology (which we did provide to them)
was the most helpful for specifications

Natural Web Interfaces

6 www.computer.org/internet/ IEEE INTERNET COMPUTING

(x� = 5). The application specifica-
tions can be quite valuable in testing,
and subsequently, for maintenance
(although our study didn’t include
maintenance).

I ncorporating social expectations
enables an application to deliver

a privacy-preserving experience by
promoting personalization, disclosure
and control, and accountability. Danio
extends well-known design and engi-
neering techniques to engineer privacy
into social applications by incorporat-
ing social expectations. Our preliminary
evaluation shows the merits of Danio
and sets the stage for more extensive
evaluations.

An interesting direction is extend-
ing Danio to tackle cases where user
interactions are motivated by subtle
tradeoffs between privacy and social
utility. For example, a callee might
accept a call to gloat to his neighbors
about the caller having called him or
to the caller about a meeting with the
neighbors.

One contribution of Danio is to
show how to engineer privacy in social
applications in a way that accommo-
dates aspects of privacy that are often
de-emphasized. Synthesizing these
diverse aspects of privacy and providing
a context-sensitive way to engi-
neer privacy with respect to diverse

 tradeoffs is an important challenge for
future research.

Acknowledgment
We thank the US Department of Defense for

support through the Science of Security Lablet.

References
1. W.L. Prosser, “Privacy,” California Law

Rev., vol. 48, no. 3, 1960, pp. 383–423.

2. P.K. Murukannaiah and M.P. Singh,

“Platys: An Active Learning Framework

for Place-Aware Application Development

and Its Evaluation,” ACM Trans. Software

Eng. and Methodology, vol. 24, no. 3, 2015,

pp. 1–33.

3. O.A. Alsos and D. Svanæs, “Designing for

the Secondary User Experience,” P. Campos

et al., eds., Proc. Human-Computer Interac-

tion, LNCS 6949, Springer, 2011, pp. 84–91.

4. K. Battarbee, “Defining Co-Experience,”

Proc. Int’l Conf. Designing Pleasurable

Products and Interfaces, 2003, pp. 109–113.

5. S. Spiekermann and L.F. Cranor, “Engineer-

ing Privacy,” IEEE Trans. Software Eng.,

vol. 35, no. 1, 2009, pp. 67–82.

6. M.P. Singh, “Norms as a Basis for Govern-

ing Sociotechnical Systems,” ACM Trans.

Intelligent Systems and Technology, vol. 5,

no. 1, 2013, pp. 21:1–21:23.

7. P. Pasquier, R.A. Flores, and B. Chaib-draa,

“An Ontology of Social Control Tools,” Proc.

Int’l Joint Conf. Autonomous Agents and

Multiagent Systems, 2006, pp. 1369–1371.

8. L.G. Nardin et al., “Classifying Sanctions

and Modelling a Sanctioning Process for

 Socio-Technical Systems,” The Knowledge

Eng. Rev., vol. 31, no. 2 2016, pp. 1–24.

9. P. Bresciani et al., “Tropos: An Agent-

Oriented Software Development Methodol-

ogy,” Autonomous Agents and Multi-Agent

Systems, vol. 8, no. 3, 2004, pp. 203–236.

10. P.K. Murukannaiah and M. P. Singh,

“Xipho: Extending Tropos to Engineer

Context-Aware Personal Agents,” Proc.

Int’l Conf. Autonomous Agents and Multi-

Agent Systems, 2014, pp. 309–316.

11. P.K. Murukannaiah et al., “Resolving Goal

Conflicts via Argumentation-Based Analy-

sis of Competing Hypotheses,” Proc. 23rd

IEEE Int’l Requirements Eng. Conf., 2015,

pp. 156–165.

Pradeep Murukannaiah is a computer science

PhD candidate at North Carolina State

University. His research interests include

software engineering, social computing,

and context-aware systems. Murukannaiah

has an MS in computer science from North

Carolina State University. Contact him at

pmuruka@ncsu.edu.

Nirav Ajmeri is a computer science PhD stu-

dent at North Carolina State University. His

research interests include software engi-

neering and multiagent systems. Ajmeri

has a BE in computer engineering from

Sardar Vallabhbhai Patel Institute of Tech-

nology, Gujarat University. Contact him at

najmeri@ncsu.edu.

Munindar Singh is a computer science professor at

North Carolina State University. His research

interests include the engineering and gover-

nance of sociotechnical systems. Singh is an

IEEE Fellow, a former Editor-in-Chief of IEEE

Internet Computing, and the current Editor-

in-Chief of ACM Transactions on Internet

Technology. Contact him at singh@ncsu.edu.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Figure 3. Time expended (in minutes) by subjects in developing the ringer
manager. Time to (a) understand requirements, (b) prepare the specification,
(c) implement, and (d) test.

0 500 1,000
(a) (b)

(c) (d)

1,500

Danio

Control

100 200 300

Danio

Control

0 500 1,000 1,500

Danio

Control

0 200 400 600 800

Danio

Control

